-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
68 lines (54 loc) · 2.18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from tkinter import*
from tkinter import ttk
from PIL import Image,ImageTk
from tkinter import messagebox
import mysql.connector
import cv2
import os
import numpy as np
class Train:
def __init__(self,root):
self.root=root
self.root.geometry("1530x790+0+0")
self.root.title("face Recognition System")
title_lbl=Label(self.root,text="TRAIN DATASET",font=("times new roman",35,"bold"),bg="blue")
title_lbl.place(x=0,y=0,width=1530,height=60)
#image
img_top=Image.open("Images/training2.jpeg")
img_top=img_top.resize((1530,725),Image.ANTIALIAS)
self.photoimg_top=ImageTk.PhotoImage(img_top)
f_lbl=Label(self.root,image=self.photoimg_top)
f_lbl.place(x=0,y=60,width=1530,height=725)
#button
b1_1=Button(self.root,text="TRAIN DATA",command=self.train_classifier,cursor="hand2",font=("times new roman",24,"bold"),bg="green",fg="white")
b1_1.place(x=250,y=385,width=250,height=50)
#image
# img_bottom=Image.open("Images/training2.jpeg")
# img_bottom=img_bottom.resize((530,325),Image.ANTIALIAS)
# self.photoimg_bottom=ImageTk.PhotoImage(img_bottom)
# f_lbl=Label(self.root,image=self.photoimg_bottom)
# f_lbl.place(x=0,y=435,width=530,height=325)
def train_classifier(self):
data_dir=("data")
path=[os.path.join(data_dir,file) for file in os.listdir(data_dir)]
faces=[]
ids=[]
for image in path:
img=Image.open(image).convert('L') #gray scale image
imageNp=np.array(img,'uint8')
id=int(os.path.split(image)[1].split('.')[1])
faces.append(imageNp)
ids.append(id)
cv2.imshow("Training",imageNp)
cv2.waitKey(1)==13
ids=np.array(ids)
#train classifier
clf=cv2.face.LBPHFaceRecognizer_create()
clf.train(faces,ids)
clf.write("classifier.xml")
cv2.destroyAllWindows()
messagebox.showinfo("Result","Training datasets completed!!")
if __name__== "__main__":
root=Tk()
obj=Train(root)
root.mainloop()