forked from bamos/densenet.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
executable file
·222 lines (199 loc) · 8.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#!/usr/bin/env python3
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import DataLoader
import torchvision.datasets as dset
import torchvision.models as models
import torchvision.transforms as transforms
import argparse
import math
import os
import setproctitle
import shutil
import sys
import config
import densenet
from transforms import RandomBrightness
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-n', '--network-name', type=str, required=True)
parser.add_argument('-d', '--dataset-name', type=str, required=True)
parser.add_argument('-c', '--num-classes', type=int, required=True)
parser.add_argument('-m', '--multilabel', type=bool, default=False)
parser.add_argument('-p', '--pretrained', type=bool, default=False)
parser.add_argument('-l', '--load')
parser.add_argument('--batchSz', type=int, default=64)
parser.add_argument('--nEpochs', type=int, default=300)
parser.add_argument('--sEpoch', type=int, default=1)
parser.add_argument('--no-cuda', action='store_true')
parser.add_argument('--save')
parser.add_argument('--seed', type=int, default=50)
parser.add_argument('--opt', type=str, default='sgd', choices=('sgd', 'adam', 'rmsprop'))
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
args.save = args.save or 'work/%s/%s' % (args.network_name, args.dataset_name)
setproctitle.setproctitle(args.save)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
if os.path.exists(args.save):
shutil.rmtree(args.save)
os.makedirs(args.save, exist_ok=True)
normMean = [0.49139968, 0.48215827, 0.44653124]
normStd = [0.24703233, 0.24348505, 0.26158768]
normTransform = transforms.Normalize(normMean, normStd)
trainTransform = transforms.Compose([
transforms.Scale(256),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
RandomBrightness(-0.25, 0.25),
normTransform
])
testTransform = transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normTransform
])
kwargs = {'num_workers': 6, 'pin_memory': True} if args.cuda else {}
trainLoader = DataLoader(
config.get_dataset(args.dataset_name, 'train', trainTransform),
batch_size=args.batchSz, shuffle=True, **kwargs)
testLoader = DataLoader(
config.get_dataset(args.dataset_name, 'test', testTransform),
batch_size=args.batchSz, shuffle=False, **kwargs)
if args.load:
print("Loading network: {}".format(args.load))
net = torch.load(args.load)
else:
net = config.get_network(args.network_name, args.num_classes, args.pretrained)
if True: # make this an optional
net = torch.nn.DataParallel(net)
print(' + Number of params: {}'.format(sum([p.data.nelement() for p in net.parameters()])))
if args.cuda:
net = net.cuda().half()
if args.opt == 'sgd':
optimizer = optim.SGD(net.parameters(), lr=1e-1, momentum=0.9, weight_decay=1e-4)
elif args.opt == 'adam':
optimizer = optim.Adam(net.parameters(), weight_decay=1e-4)
elif args.opt == 'rmsprop':
optimizer = optim.RMSprop(net.parameters(), weight_decay=1e-4)
trainF = open(os.path.join(args.save, 'train.csv'), 'a')
testF = open(os.path.join(args.save, 'test.csv'), 'a')
for epoch in range(args.sEpoch, args.nEpochs + args.sEpoch):
adjust_opt(args.opt, optimizer, epoch)
train(args, epoch, net, trainLoader, optimizer, trainF)
test(args, epoch, net, testLoader, optimizer, testF)
torch.save(net, os.path.join(args.save, '%d.pth' % epoch))
trainF.close()
testF.close()
def train(args, epoch, net, trainLoader, optimizer, trainF):
net.train()
nProcessed = 0
nTrain = len(trainLoader.dataset)
for batch_idx, (data, target) in enumerate(trainLoader):
if args.cuda:
data = data.cuda().half()
if args.multilabel:
target = target.cuda().half()
else:
target = target.cuda().long()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = net(data)
loss = config.get_loss_function(args.multilabel)(output, target)
loss.backward()
optimizer.step()
nProcessed += len(data)
if args.multilabel:
pred = output.data.gt(0.5)
tp = (pred + target.data.byte()).eq(2).sum()
fp = (pred - target.data.byte()).eq(1).sum()
fn = (pred - target.data.byte()).eq(-1).sum()
tn = (pred + target.data.byte()).eq(0).sum()
acc = (tp + tn) / (tp + tn + fp + fn)
try:
prec = tp / (tp + fp)
except ZeroDivisionError:
prec = 0.0
try:
rec = tp / (tp + fn)
except ZeroDivisionError:
rec = 0.0
partialEpoch = epoch + batch_idx / len(trainLoader) - 1
print('Epoch: {:.2f} [{}/{} ({:.0f}%)]\tLoss: {:.4f}\tAcc: {:.4f}\tPrec: {:.4f}\tRec: {:.4f}\tTP: {}\tFP: {}\tFN: {}\tTN: {}'.format(
partialEpoch, nProcessed, nTrain, 100. * batch_idx / len(trainLoader),
loss.data[0], acc, prec, rec, tp, fp, fn, tn))
trainF.write('{},{},{},{},{}\n'.format(partialEpoch, loss.data[0], acc, prec, rec))
else:
pred = output.data.max(1)[1]
incorrect = pred.ne(target.data).sum()
err = 100.*incorrect/len(data)
partialEpoch = epoch + batch_idx / len(trainLoader) - 1
print('Train Epoch: {:.2f} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tError: {:.6f}'.format(
partialEpoch, nProcessed, nTrain, 100. * batch_idx / len(trainLoader),
loss.data[0], err))
trainF.write('{},{},{}\n'.format(partialEpoch, loss.data[0], err))
trainF.flush()
def test(args, epoch, net, testLoader, optimizer, testF):
net.eval()
test_loss = 0
acc = prec = rec = 0
incorrect = 0
for data, target in testLoader:
if args.cuda:
data = data.cuda().half()
if args.multilabel:
target = target.cuda().half()
else:
target = target.cuda().long()
data, target = Variable(data, volatile=True), Variable(target)
output = net(data)
test_loss += config.get_loss_function(args.multilabel)(output, target).data[0]
if args.multilabel:
pred = output.data.gt(0.5)
tp = (pred + target.data.byte()).eq(2).sum()
fp = (pred - target.data.byte()).eq(1).sum()
fn = (pred - target.data.byte()).eq(-1).sum()
tn = (pred + target.data.byte()).eq(0).sum()
acc += (tp + tn) / (tp + tn + fp + fn)
try:
prec += tp / (tp + fp)
except ZeroDivisionError:
prec += 0.0
try:
rec += tp / (tp + fn)
except ZeroDivisionError:
rec += 0.0
else:
pred = output.data.max(1)[1] # get the index of the max log-probability
incorrect += pred.ne(target.data).sum()
test_loss /= len(testLoader)
acc /= len(testLoader)
prec /= len(testLoader)
rec /= len(testLoader)
if args.multilabel:
print('\nTest set: Loss: {:.4f}, Acc: {:.4f}, Prec: {:.4f}, Rec: {:.4f}\n'.format(
test_loss, acc, prec, rec))
testF.write('{},{},{},{},{}\n'.format(epoch, test_loss, acc, prec, rec))
else:
nTotal = len(testLoader.dataset)
err = 100. * incorrect / nTotal
print('\nTest set: Average loss: {:.4f}, Error: {}/{} ({:.0f}%)\n'.format(
test_loss, incorrect, nTotal, err))
testF.write('{},{},{}\n'.format(epoch, test_loss, err))
testF.flush()
def adjust_opt(optAlg, optimizer, epoch):
if optAlg == 'sgd':
if epoch < 150: lr = 1e-1
elif epoch == 150: lr = 1e-2
elif epoch == 225: lr = 1e-3
else: return
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__=='__main__':
main()