forked from irom-princeton/PAC-Bayes-Control
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_simulation.py
193 lines (125 loc) · 7.08 KB
/
utils_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import numpy as np
# Helper functions for setting up obstacle environments, simulating dynamics, etc.
# Parameters
def get_parameters():
params = {} # Initialize parameter dictionary
params['numRays'] = 20 # number of rays for sensor measurements
params['senseRadius'] = 5.0 # sensing radius
params['robotRadius'] = 0.27 # radius of robot
params['robotHeight'] = 0.15/2 # rough height of COM of robot
params['th_min'] = -np.pi/3 # sensing angle minimum
params['th_max'] = np.pi/3 # sensing angle maximum
params['T_horizon'] = 100 # time horizon over which to evaluate everything
# precompute vector of angles for sensor
params['thetas_nominal'] = np.reshape(np.linspace(params['th_min'], params['th_max'], params['numRays']), (params['numRays'],1))
return params
# Robot dynamics
def robot_update_state(state, u_diff):
# State: [x,y,theta]
# x: horizontal position
# y: vertical position
# theta: angle from vertical (positive is anti-clockwise)
# Dynamics:
# xdot = -(r/2)*(ul + ur)*sin(theta)
# ydot = (r/2)*(ul + ur)*cos(theta)
# thetadot = (r/L)*(ur - ul)
# Robot parameters
r = 0.1; # Radius of robot wheel
L = 0.5; # Length between wheels (i.e., width of base)
dt = 0.05
v0 = 2.5 # forward speed
# Saturate udiff
u_diff_max = 0.5*(v0/r)
u_diff_min = -u_diff_max
u_diff = np.maximum(u_diff_min, u_diff)
u_diff = np.minimum(u_diff_max, u_diff)
ul = v0/r - u_diff;
ur = v0/r + u_diff;
new_state = [0.0, 0.0, 0.0]
new_state[0] = state[0] + dt*(-(r/2)*(ul + ur)*np.sin(state[2])) # x position
new_state[1] = state[1] + dt*((r/2)*(ul + ur)*np.cos(state[2])) # y position
new_state[2] = state[2] + dt*((r/L)*(ur - ul))
return new_state
# Create some obstacles
def generate_obstacles(p, heightObs, robotRadius):
# First create bounding obstacles
x_lim = [-5.0, 5.0]
y_lim = [0.0, 10.0]
numObs = 20+np.random.randint(0,21) # 30
# radiusObs = 0.15
massObs = 0
visualShapeId = -1
linkMasses = [None]*(numObs+3) # +3 is because we have three bounding walls
colIdxs = [None]*(numObs+3)
visIdxs = [None]*(numObs+3)
posObs = [None]*(numObs+3)
orientObs = [None]*(numObs+3)
parentIdxs = [None]*(numObs+3)
linkInertialFramePositions = [None]*(numObs+3)
linkInertialFrameOrientations = [None]*(numObs+3)
linkJointTypes = [None]*(numObs+3)
linkJointAxis = [None]*(numObs+3)
for obs in range(numObs):
linkMasses[obs] = 0.0
visIdxs[obs] = -1 # p.createVisualShape(p.GEOM_CYLINDER,radiusObs,[1,1,1],heightObs,rgbaColor=[0,0,0,1])
parentIdxs[obs] = 0
linkInertialFramePositions[obs] = [0,0,0]
linkInertialFrameOrientations[obs] = [0,0,0,1]
linkJointTypes[obs] = p.JOINT_FIXED
linkJointAxis[obs] = np.array([0,0,1]) # [None]*numObs
posObs_obs = np.array([None]*3)
posObs_obs[0] = x_lim[0] + (x_lim[1] - x_lim[0])*np.random.random_sample(1)
posObs_obs[1] = 2.0 + y_lim[0] + (y_lim[1] - y_lim[0] - 2.0)*np.random.random_sample(1) # Push up a bit
posObs_obs[2] = 0 # set z at ground level
posObs[obs] = posObs_obs # .tolist()
orientObs[obs] = [0,0,0,1]
colIdxs[obs] = p.createCollisionShape(p.GEOM_CYLINDER,radius=(0.20 - 0.05)*np.random.random_sample(1)+0.05,height=heightObs)
# colIdxs[obs] = p.createCollisionShape(p.GEOM_CYLINDER,radius=radiusObs,height=heightObs)
# Create bounding objects
# Left wall
linkMasses[numObs] = 0.0
visIdxs[numObs] = -1 # p.createVisualShape(p.GEOM_BOX, halfExtents = [0.1, (y_lim[1] - y_lim[0])/2.0, heightObs/2], rgbaColor=[0.8,0.1,0.1,1.0]) # -1
parentIdxs[numObs] = 0
linkInertialFramePositions[numObs] = [0,0,0]
linkInertialFrameOrientations[numObs] = [0,0,0,1]
linkJointTypes[numObs] = p.JOINT_FIXED
linkJointAxis[numObs] = np.array([0,0,1])
posObs[numObs] = [x_lim[0], (y_lim[0]+y_lim[1])/2.0, 0.0]
orientObs[numObs] = [0,0,0,1]
colIdxs[numObs] = p.createCollisionShape(p.GEOM_BOX, halfExtents = [0.1, (y_lim[1] - y_lim[0])/2.0, heightObs/2])
# Right wall
linkMasses[numObs+1] = 0.0
visIdxs[numObs+1] = -1 # p.createVisualShape(p.GEOM_BOX, halfExtents = [0.1, (y_lim[1] - y_lim[0])/2.0, heightObs/2], rgbaColor=[0.8,0.1,0.1,1.0]) # -1
parentIdxs[numObs+1] = 0
linkInertialFramePositions[numObs+1] = [0,0,0]
linkInertialFrameOrientations[numObs+1] = [0,0,0,1]
linkJointTypes[numObs+1] = p.JOINT_FIXED
linkJointAxis[numObs+1] = np.array([0,0,1])
posObs[numObs+1] = [x_lim[1], (y_lim[0]+y_lim[1])/2.0, 0.0]
orientObs[numObs+1] = [0,0,0,1]
colIdxs[numObs+1] = p.createCollisionShape(p.GEOM_BOX, halfExtents = [0.1, (y_lim[1] - y_lim[0])/2.0, heightObs/2])
# Bottom wall
linkMasses[numObs+2] = 0.0
visIdxs[numObs+2] = -1 # p.createVisualShape(p.GEOM_BOX, halfExtents = [0.1, (x_lim[1] - x_lim[0])/2.0, heightObs/2], rgbaColor=[0.8,0.1,0.1,1.0])
parentIdxs[numObs+2] = 0
linkInertialFramePositions[numObs+2] = [0,0,0]
linkInertialFrameOrientations[numObs+2] = [0,0,0,1]
linkJointTypes[numObs+2] = p.JOINT_FIXED
linkJointAxis[numObs+2] = np.array([0,0,1])
posObs[numObs+2] = [(x_lim[0]+x_lim[1])/2.0, y_lim[0], 0.0]
orientObs[numObs+2] = [0,0,np.sqrt(2)/2,np.sqrt(2)/2]
colIdxs[numObs+2] = p.createCollisionShape(p.GEOM_BOX, halfExtents = [0.1, (x_lim[1] - x_lim[0])/2.0, heightObs/2])
obsUid = p.createMultiBody(baseCollisionShapeIndex = -1, baseVisualShapeIndex = -1, basePosition = [0,0,0], baseOrientation = [0,0,0,1], baseInertialFramePosition = [0,0,0], baseInertialFrameOrientation = [0,0,0,1], linkMasses = linkMasses, linkCollisionShapeIndices = colIdxs, linkVisualShapeIndices = visIdxs, linkPositions = posObs, linkOrientations = orientObs, linkParentIndices = parentIdxs, linkInertialFramePositions = linkInertialFramePositions, linkInertialFrameOrientations = linkInertialFrameOrientations, linkJointTypes = linkJointTypes, linkJointAxis = linkJointAxis)
return obsUid
# Simulate range sensor (get distances along rays)
def getDistances(p, state, robotHeight, numRays, senseRadius, thetas_nominal):
# Get distances
# rays emanate from robot
raysFrom = np.concatenate((state[0]*np.ones((numRays,1)), state[1]*np.ones((numRays,1)), robotHeight*np.ones((numRays,1))), 1)
thetas = (-state[2]) + thetas_nominal # Note the minus sign: +ve direction for state[2] is anti-clockwise (right hand rule), but sensor rays go clockwise
raysTo = np.concatenate((state[0]+senseRadius*np.sin(thetas), state[1]+senseRadius*np.cos(thetas), robotHeight*np.ones((numRays,1))), 1)
coll = p.rayTestBatch(raysFrom, raysTo)
dists = np.zeros((1,numRays))
for i in range(numRays):
dists[0][i] = senseRadius*coll[i][2]
return dists