-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbatchEffectAnalysis.rmd
768 lines (655 loc) · 30.9 KB
/
batchEffectAnalysis.rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
```{r data, echo = FALSE}
inpD <-"F:\\promec\\Animesh\\HUNT\\txt106dpMBR\\"
data <- read.delim(paste0(inpD,"proteinGroups.txt"),row.names=1,sep="\t",header = T)
summary(data)
decoyPrefix="REV"
contaminantPrefix="CON"
dataC="LFQ.intensity."
```
```{r dataNorm, echo = FALSE}
dataNorm=log2(data[,grep(dataC, names(data))])
#set.seed(1)
#dataNorm[dataNorm==0]<-NaN#rnorm(1,mean=mean(dataNorm),sd=sd(dataNorm))
dataNorm[dataNorm==-Inf]=NA
summary(dataNorm)
```
```{r write-output, echo = FALSE}
write.table(dataNorm,file=paste0(inpD,"log2data.txt"), sep = "\t")
#dump(dataNorm,file=paste0(inpD,"dataNorm.R"))
```
```{r impute, echo = FALSE}
#install.packages('mice')
library(mice)
#install.packages('randomForest')
library(randomForest)
dataNormImp=mice(dataNorm, method="rf")
dataNormImpCom <- complete(dataNormImp,1)
row.names(dataNormImpCom)<-row.names(dataNorm)
summary(dataNormImpCom)
```
```{r write-output, echo = FALSE}
#write.csv(dataNormImpCom,file=paste0(inpD,"log2dataImp.csv"))
#write.csv(factors,file=paste0(inpD,"dataNormImpComFactor.csv"))
dataNormImpCom <- read.csv(paste0(inpD,"log2dataImp.csv"),row.names=1,header = T)
#factors<-read.csv(paste0(inpD,"dataNormImpComFactor.csv"))
#dump(dataNorm,file=paste0(inpD,"dataNorm.R"))
```
```{r PCA, echo = FALSE}
plot(princomp(dataNormImpCom))
biplot(prcomp(dataNormImpCom,scale = F))
biplot(princomp(as.matrix(t(dataNormImpCom)),scale = T))
```
```{r proBatch}
#https://github.com/symbioticMe/proBatch
#needs R version 3.6
#install.packages("BiocManager")
#BiocManager::install("proBatch")
#install.packages("devtools")
library(devtools)
#install_github("symbioticMe/proBatch", build_vignettes = TRUE)
library(proBatch)
help(proBatch)
```
```{r condition, echo = FALSE}
factors=as.factor(sapply(strsplit(names(data)[grep(dataC, names(data))],"[0-9]+"),'[[', 2))
factors=as.integer(factors)
#factors=as.character(sapply(strsplit(names(data)[grep(dataC, names(data))],"[0-9]+"),'[[', 2))
```
```{r DEqMS}
#https://rdrr.io/bioc/DEqMS/f/vignettes/DEqMS-package-vignette.Rmd
#install.packages('devtools')
#devtools::install_github("syspremed/exploBATCH",verbose=TRUE)
#BiocManager::install("DEqMS")
library(DEqMS)
#url <- "ftp://ftp.pride.ebi.ac.uk/pride/data/archive/2016/06/PXD004163/Yan_miR_Protein_table.flatprottable.txt"
#download.file(url, destfile = "./miR_Proteintable.txt",method = "auto")
df.prot = read.table("F:\\promec\\Animesh\\Yan_miR_Protein_table.flatprottable.txt",stringsAsFactors = FALSE,header = TRUE, quote = "", comment.char = "",sep = "\t")
# filter at 1% protein FDR and extract TMT quantifications
TMT_columns = seq(15,33,2)
dat = df.prot[df.prot$miR.FASP_q.value<0.01,TMT_columns]
rownames(dat) = df.prot[df.prot$miR.FASP_q.value<0.01,]$Protein.accession
# The protein dataframe is a typical protein expression matrix structure
# Samples are in columns, proteins are in rows
# use unique protein IDs for rownames
# to view the whole data frame, use the command View(dat)
dat.log = log2(dat)
#remove rows with NAs
dat.log = na.omit(dat.log)
boxplot(dat.log,las=2,main="TMT10plex data PXD004163")
# if there is only one factor, such as treatment. You can define a vector with
# the treatment group in the same order as samples in the protein table.
cond = as.factor(c("ctrl","miR191","miR372","miR519","ctrl",
"miR372","miR519","ctrl","miR191","miR372"))
# The function model.matrix is used to generate the design matrix
design = model.matrix(~0+cond) # 0 means no intercept for the linear model
colnames(design) = gsub("cond","",colnames(design))
# you can define one or multiple contrasts here
x <- c("miR372-ctrl","miR519-ctrl","miR191-ctrl",
"miR372-miR519","miR372-miR191","miR519-miR191")
contrast = makeContrasts(contrasts=x,levels=design)
fit1 <- lmFit(dat.log, design)
fit2 <- contrasts.fit(fit1,contrasts = contrast)
fit3 <- eBayes(fit2)
# assign a extra variable `count` to fit3 object, telling how many PSMs are
# quantifed for each protein
library(matrixStats)
count_columns = seq(16,34,2)
psm.count.table = data.frame(count = rowMins(
as.matrix(df.prot[,count_columns])), row.names = df.prot$Protein.accession)
fit3$count = psm.count.table[rownames(fit3$coefficients),"count"]
fit4 = spectraCounteBayes(fit3)
# n=30 limits the boxplot to show only proteins quantified by <= 30 PSMs.
VarianceBoxplot(fit4,n=30,main="TMT10plex dataset PXD004163",xlab="PSM count")
VarianceScatterplot(fit4,main="TMT10plex dataset PXD004163")
DEqMS.results = outputResult(fit4,coef_col = 1)
#if you are not sure which coef_col refers to the specific contrast,type
head(fit4$coefficients)
# a quick look on the DEqMS results table
head(DEqMS.results)
# Save it into a tabular text file
write.table(DEqMS.results,paste0(inpD,"DEqMS.results.miR372-ctrl.txt"),sep = "\t",row.names = F,quote=F)
install.packages("ggrepel")
library(ggrepel)
# Use ggplot2 allows more flexibility in plotting
DEqMS.results$log.sca.pval = -log10(DEqMS.results$sca.P.Value)
ggplot(DEqMS.results, aes(x = logFC, y =log.sca.pval )) +
geom_point(size=0.5 )+
theme_bw(base_size = 16) + # change theme
xlab(expression("log2(miR372/ctrl)")) + # x-axis label
ylab(expression(" -log10(P-value)")) + # y-axis label
geom_vline(xintercept = c(-1,1), colour = "red") + # Add fold change cutoffs
geom_hline(yintercept = 3, colour = "red") + # Add significance cutoffs
geom_vline(xintercept = 0, colour = "black") + # Add 0 lines
scale_colour_gradient(low = "black", high = "black", guide = FALSE)+
geom_text_repel(data=subset(DEqMS.results, abs(logFC)>1&log.sca.pval > 3),
aes( logFC, log.sca.pval ,label=gene)) # add gene label
fit4$p.value = fit4$sca.p
# volcanoplot highlight top 20 proteins ranked by p-value here
volcanoplot(fit4,coef=1, style = "p-value", highlight = 20,names=rownames(fit4$coefficients))
design = model.matrix(~0+as.factor(factors))
colnames(design) = gsub("as\\.factor\\(factors\\)","",colnames(design))
contrast = makeContrasts(contrasts=colnames(dataNormImpCom),levels=design)
contrast = makeContrasts(contrasts=colnames(design),levels=design)
fit1 <- lmFit(dat.log, design)
fit2 <- contrasts.fit(fit1,contrasts = contrast)
fit3 <- eBayes(fit2)
df.LFQ<-dataNormImpCom
boxplot(df.LFQ)
library(matrixStats)
pep.count.table = data.frame(count = rowMins(as.matrix(data[,112:217])))
# Minimum peptide count of some proteins can be 0
# add pseudocount 1 to all proteins
pep.count.table$count = pep.count.table$count+1
class<-as.factor(factors)
design = model.matrix(~0+class)
protein.matrix = as.matrix(df.LFQ)
fit1 = lmFit(protein.matrix,design = design)
?makeContrasts
cont <- makeContrasts(c(1)-c(2),levels = design)
cont <- makeContrasts(c(1),levels = design)
fit2 = contrasts.fit(fit1,contrasts = cont)
fit3 <- eBayes(fit2)
fit3$count = pep.count.table$count#[rownames(fit3$coefficients),"count"]
#check the values in the vector fit3$count
#if min(fit3$count) return NA or 0, you should troubleshoot the error first
min(fit3$count)
fit4 = spectraCounteBayes(fit3)
VarianceBoxplot(fit4, n=20, main = "lfqHUNT",xlab="peptide count + 1")
```
```{r exploBatch, echo = FALSE}
Download and Read the input protein table
url <- "ftp://ftp.pride.ebi.ac.uk/pride/data/archive/2016/06/PXD004163/Yan_miR_Protein_table.flatprottable.txt"
download.file(url, destfile = "./miR_Proteintable.txt",method = "auto")
df.prot = read.table("miR_Proteintable.txt",stringsAsFactors = FALSE,
header = TRUE, quote = "", comment.char = "",sep = "\t")
Extract quant data columns for DEqMS
# filter at 1% protein FDR and extract TMT quantifications
TMT_columns = seq(15,33,2)
dat = df.prot[df.prot$miR.FASP_q.value<0.01,TMT_columns]
rownames(dat) = df.prot[df.prot$miR.FASP_q.value<0.01,]$Protein.accession
# The protein dataframe is a typical protein expression matrix structure
# Samples are in columns, proteins are in rows
# use unique protein IDs for rownames
# to view the whole data frame, use the command View(dat)
If the protein table is relative abundance (ratios) or intensity values, Log2 transform the data. Systematic effects and variance components are usually assumed to be additive on log scale (Oberg AL. et al JPR 2008; Hill EG. et al JPR 2008).
dat.log = log2(dat)
#remove rows with NAs
dat.log = na.omit(dat.log)
Use boxplot to check if the samples have medians centered. if not, do median centering.
boxplot(dat.log,las=2,main="TMT10plex data PXD004163")
# Here the data is already median centered, we skip the following step.
# dat.log = equalMedianNormalization(dat.log)
Make design table.
A design table is used to tell how samples are arranged in different groups/classes.
# if there is only one factor, such as treatment. You can define a vector with
# the treatment group in the same order as samples in the protein table.
cond = as.factor(c("ctrl","miR191","miR372","miR519","ctrl",
"miR372","miR519","ctrl","miR191","miR372"))
# The function model.matrix is used to generate the design matrix
design = model.matrix(~0+cond) # 0 means no intercept for the linear model
colnames(design) = gsub("cond","",colnames(design))
Make contrasts
In addition to the design, you need to define the contrast, which tells the model to compare the differences between specific groups. Start with the Limma part.
# you can define one or multiple contrasts here
x <- c("miR372-ctrl","miR519-ctrl","miR191-ctrl",
"miR372-miR519","miR372-miR191","miR519-miR191")
contrast = makeContrasts(contrasts=x,levels=design)
fit1 <- lmFit(dat.log, design)
fit2 <- contrasts.fit(fit1,contrasts = contrast)
fit3 <- eBayes(fit2)
DEqMS analysis
The above shows Limma part, now we use the function spectraCounteBayes in DEqMS to correct bias of variance estimate based on minimum number of psms per protein used for quantification.We use the minimum number of PSMs used for quantification within and across experiments to model the relation between variance and PSM count.(See original paper)
# assign a extra variable `count` to fit3 object, telling how many PSMs are
# quantifed for each protein
library(matrixStats)
count_columns = seq(16,34,2)
psm.count.table = data.frame(count = rowMins(
as.matrix(df.prot[,count_columns])), row.names = df.prot$Protein.accession)
fit3$count = psm.count.table[rownames(fit3$coefficients),"count"]
fit4 = spectraCounteBayes(fit3)
Outputs of spectraCounteBayes:
object is augmented form of "fit" object from eBayes in Limma, with the additions being:
sca.t - Spectra Count Adjusted posterior t-value
sca.p - Spectra Count Adjusted posterior p-value
sca.dfprior - DEqMS estimated prior degrees of freedom
sca.priorvar- DEqMS estimated prior variance
sca.postvar - DEqMS estimated posterior variance
model - fitted model
Visualize the fit curve - variance dependence on quantified PSM
# n=30 limits the boxplot to show only proteins quantified by <= 30 PSMs.
VarianceBoxplot(fit4,n=30,main="TMT10plex dataset PXD004163",xlab="PSM count")
VarianceScatterplot(fit4,main="TMT10plex dataset PXD004163")
Extract the results as a data frame and save it
DEqMS.results = outputResult(fit4,coef_col = 1)
#if you are not sure which coef_col refers to the specific contrast,type
head(fit4$coefficients)
# a quick look on the DEqMS results table
head(DEqMS.results)
# Save it into a tabular text file
write.table(DEqMS.results,"DEqMS.results.miR372-ctrl.txt",sep = "\t",
row.names = F,quote=F)
Explaination of the columns in DEqMS.results:
logFC - log2 fold change between two groups, Here it's log2(miR372/ctrl).
AveExpr - the mean of the log2 ratios/intensities across all samples. Since input matrix is log2 ratio values, it is the mean log2 ratios of all samples.
t - Limma output t-statistics
P.Value- Limma p-values
adj.P.Val - BH method adjusted Limma p-values
B - Limma B values
count - PSM/peptide count values you assigned
sca.t - DEqMS t-statistics
sca.P.Value - DEqMS p-values
sca.adj.pval - BH method adjusted DEqMS p-values
Make volcanoplot
We recommend to plot p-values on y-axis instead of adjusted pvalue or FDR.
Read about why here.
library(ggrepel)
# Use ggplot2 allows more flexibility in plotting
DEqMS.results$log.sca.pval = -log10(DEqMS.results$sca.P.Value)
ggplot(DEqMS.results, aes(x = logFC, y =log.sca.pval )) +
geom_point(size=0.5 )+
theme_bw(base_size = 16) + # change theme
xlab(expression("log2(miR372/ctrl)")) + # x-axis label
ylab(expression(" -log10(P-value)")) + # y-axis label
geom_vline(xintercept = c(-1,1), colour = "red") + # Add fold change cutoffs
geom_hline(yintercept = 3, colour = "red") + # Add significance cutoffs
geom_vline(xintercept = 0, colour = "black") + # Add 0 lines
scale_colour_gradient(low = "black", high = "black", guide = FALSE)+
geom_text_repel(data=subset(DEqMS.results, abs(logFC)>1&log.sca.pval > 3),
aes( logFC, log.sca.pval ,label=gene)) # add gene label
you can also use volcanoplot function from Limma. However, it uses p.value from Limma. If you want to plot sca.pvalue from DEqMS, you need to modify the fit4 object.
fit4$p.value = fit4$sca.p
# volcanoplot highlight top 20 proteins ranked by p-value here
volcanoplot(fit4,coef=1, style = "p-value", highlight = 20,
names=rownames(fit4$coefficients))
DEqMS analysis using MaxQuant outputs (label-free data)
Here we analyze a published label-free benchmark dataset in which either 10 or 30 µg of E. coli protein extract was spiked into human protein extracts (50 µg) in triplicates (Cox J et al MCP 2014). The data was searched by MaxQuant software and the output file "proteinGroups.txt" was used here.
url2 <- "ftp://ftp.pride.ebi.ac.uk/pride/data/archive/2014/09/PXD000279/proteomebenchmark.zip"
download.file(url2, destfile = "./PXD000279.zip",method = "auto")
unzip("PXD000279.zip")
Read protein table as input and filter it
df.prot = read.table("proteinGroups.txt",header=T,sep="\t",stringsAsFactors = F,
comment.char = "",quote ="")
# remove decoy matches and matches to contaminant
df.prot = df.prot[!df.prot$Reverse=="+",]
df.prot = df.prot[!df.prot$Contaminant=="+",]
# Extract columns of LFQ intensites
df.LFQ = df.prot[,89:94]
df.LFQ[df.LFQ==0] <- NA
rownames(df.LFQ) = df.prot$Majority.protein.IDs
df.LFQ$na_count_H = apply(df.LFQ,1,function(x) sum(is.na(x[1:3])))
df.LFQ$na_count_L = apply(df.LFQ,1,function(x) sum(is.na(x[4:6])))
# Filter protein table. DEqMS require minimum two values for each group.
df.LFQ.filter = df.LFQ[df.LFQ$na_count_H<2 & df.LFQ$na_count_L<2,1:6]
Make a data frame of unique peptide count per protein
library(matrixStats)
# we use minimum peptide count among six samples
# count unique+razor peptides used for quantification
pep.count.table = data.frame(count = rowMins(as.matrix(df.prot[,19:24])),
row.names = df.prot$Majority.protein.IDs)
# Minimum peptide count of some proteins can be 0
# add pseudocount 1 to all proteins
pep.count.table$count = pep.count.table$count+1
DEqMS analysis on LFQ data
protein.matrix = log2(as.matrix(df.LFQ.filter))
class = as.factor(c("H","H","H","L","L","L"))
design = model.matrix(~0+class) # fitting without intercept
fit1 = lmFit(protein.matrix,design = design)
cont <- makeContrasts(classH-classL, levels = design)
fit2 = contrasts.fit(fit1,contrasts = cont)
fit3 <- eBayes(fit2)
fit3$count = pep.count.table[rownames(fit3$coefficients),"count"]
#check the values in the vector fit3$count
#if min(fit3$count) return NA or 0, you should troubleshoot the error first
min(fit3$count)
fit4 = spectraCounteBayes(fit3)
Visualize the fit curve
VarianceBoxplot(fit4, n=20, main = "Label-free dataset PXD000279",
xlab="peptide count + 1")
Extract outputs from DEqMS
DEqMS.results = outputResult(fit4,coef_col = 1)
# Add Gene names to the data frame
rownames(df.prot) = df.prot$Majority.protein.IDs
DEqMS.results$Gene.name = df.prot[DEqMS.results$gene,]$Gene.names
head(DEqMS.results)
write.table(DEqMS.results,"H-L.DEqMS.results.txt",sep = "\t",
row.names = F,quote=F)
DEqMS analysis using a PSM table (isobaric labelled data)
If you want to try different methods to estimate protein abundance,you can start with a PSM table and use provided functions in DEqMS to summarize PSM quant data into protein quant data. Four different functions are included: medianSweeping,medianSummary,medpolishSummary,farmsSummary. Check PDF reference manual for detailed description.
Read PSM table input
### retrieve example PSM dataset from ExperimentHub
library(ExperimentHub)
eh = ExperimentHub()
query(eh, "DEqMS")
dat.psm = eh[["EH1663"]]
dat.psm.log = dat.psm
dat.psm.log[,3:12] = log2(dat.psm[,3:12])
head(dat.psm.log)
Summarization and Normalization
Here, median sweeping is used to summarize PSMs intensities to protein log2 ratios. In this procedure, we substract the spectrum log2 intensity from the median log2 intensities of all samples. The relative abundance estimate for each protein is calculated as the median over all PSMs belonging to this protein.(Herbrich et al JPR 2012 and D'Angelo et al JPR 2016).
Assume the log2 intensity of PSM i in sample j is $y_{i,j}$, its relative log2 intensity of PSM i in sample j is $y'{i,j}$: $$y'{i,j} = y_{i,j} - median_{j'\in ctrl}\ y_{i,j'} $$ Relative abundance of protein k in sample j $Y_{k,j}$ is calculated as: $$Y_{k,j} = median_{i\in protein\ k}\ y'_{i,j} $$
Correction for differences in amounts of material loaded in the channels is then done by subtracting the channel median from the relative abundance (log2 ratio), centering all channels to have median log2 value of zero.
dat.gene.nm = medianSweeping(dat.psm.log,group_col = 2)
boxplot(dat.gene.nm,las=2,ylab="log2 ratio",main="TMT10plex dataset PXD004163")
DEqMS analysis
gene.matrix = as.matrix(dat.gene.nm)
# make design table
cond = as.factor(c("ctrl","miR191","miR372","miR519","ctrl",
"miR372","miR519","ctrl","miR191","miR372"))
design = model.matrix(~0+cond)
colnames(design) = gsub("cond","",colnames(design))
#limma part analysis
fit1 <- lmFit(gene.matrix,design)
x <- c("miR372-ctrl","miR519-ctrl","miR191-ctrl")
contrast = makeContrasts(contrasts=x,levels=design)
fit2 <- eBayes(contrasts.fit(fit1,contrasts = contrast))
#DEqMS part analysis
psm.count.table = as.data.frame(table(dat.psm$gene))
rownames(psm.count.table) = psm.count.table$Var1
fit2$count = psm.count.table[rownames(fit2$coefficients),2]
fit3 = spectraCounteBayes(fit2)
# extract DEqMS results
DEqMS.results = outputResult(fit3,coef_col = 1)
head(DEqMS.results)
write.table(DEqMS.results,"DEqMS.results.miR372-ctrl.fromPSMtable.txt",
sep = "\t",row.names = F,quote=F)
Generate variance ~ PMS count boxplot, check if the DEqMS correctly find the relation between prior variance and PSM count
VarianceBoxplot(fit3,n=20, xlab="PSM count",main="TMT10plex dataset PXD004163")
PSM/Peptide profile plot
Only possible if you read a PSM or peptide table as input. peptideProfilePlot function will plot log2 intensity of each PSM/peptide of the protein in the input table.
peptideProfilePlot(dat=dat.psm.log,col=2,gene="TGFBR2")
# col=2 is tell in which column of dat.psm.log to look for the gene
Comparing DEqMS to other methods
The following steps are not required for get the results from DEqMS. it is used to help users to understand the method better and the differences to other methods. Here we use the TMT labelled data PXD004163 as an example.
Compare the variance estimate in DEqMS and Limma
Prior variance comparison between DEqMS and Limma
VarianceScatterplot(fit3, xlab="log2(PSM count)")
limma.prior = fit3$s2.prior
abline(h = log(limma.prior),col="green",lwd=3 )
legend("topright",legend=c("DEqMS prior variance","Limma prior variance"),
col=c("red","green"),lwd=3)
Residual plot for DEqMS and Limma
op <- par(mfrow=c(1,2), mar=c(4,4,4,1), oma=c(0.5,0.5,0.5,0))
Residualplot(fit3, xlab="log2(PSM count)",main="DEqMS")
x = fit3$count
y = log(limma.prior) - log(fit3$sigma^2)
plot(log2(x),y,ylim=c(-6,2),ylab="Variance(estimated-observed)", pch=20, cex=0.5,
xlab = "log2(PSMcount)",main="Limma")
Posterior variance comparison between DEqMS and Limma
The plot here shows posterior variance of proteins "shrink" toward the fitted value to different extent depending on PSM number.
library(LSD)
op <- par(mfrow=c(1,2), mar=c(4,4,4,1), oma=c(0.5,0.5,0.5,0))
x = fit3$count
y = fit3$s2.post
heatscatter(log2(x),log(y),pch=20, xlab = "log2(PSMcount)",
ylab="log(Variance)",
main="Posterior Variance in Limma")
y = fit3$sca.postvar
heatscatter(log2(x),log(y),pch=20, xlab = "log2(PSMcount)",
ylab="log(Variance)",
main="Posterior Variance in DEqMS")
Compare p-values from DEqMS to ordinary t-test, ANOVA and Limma
We first apply t.test to detect significant protein changes between ctrl samples and miR372 treated samples, both have three replicates.
T-test analysis
pval.372 = apply(dat.gene.nm, 1, function(x)
t.test(as.numeric(x[c(1,5,8)]), as.numeric(x[c(3,6,10)]))$p.value)
logFC.372 = rowMeans(dat.gene.nm[,c(3,6,10)])-rowMeans(dat.gene.nm[,c(1,5,8)])
Generate a data.frame of t.test results, add PSM count values and order the table by p-value.
ttest.results = data.frame(gene=rownames(dat.gene.nm),
logFC=logFC.372,P.Value = pval.372,
adj.pval = p.adjust(pval.372,method = "BH"))
ttest.results$PSMcount = psm.count.table[ttest.results$gene,"count"]
ttest.results = ttest.results[with(ttest.results, order(P.Value)), ]
head(ttest.results)
Anova analysis
Anova analysis is equivalent to linear model analysis. The difference to Limma analysis is that estimated variance is not moderated using empirical bayesian approach as it is done in Limma.
ord.t = fit1$coefficients[, 1]/fit1$sigma/fit1$stdev.unscaled[, 1]
ord.p = 2*pt(abs(ord.t), fit1$df.residual, lower.tail = FALSE)
ord.q = p.adjust(ord.p,method = "BH")
anova.results = data.frame(gene=names(fit1$sigma),
logFC=fit1$coefficients[,1],
t=ord.t,
P.Value=ord.p,
adj.P.Val = ord.q)
anova.results$PSMcount = psm.count.table[anova.results$gene,"count"]
anova.results = anova.results[with(anova.results,order(P.Value)),]
head(anova.results)
Limma
Extract limma results using topTable function, coef = 1 allows you to extract the specific contrast (miR372-ctrl), option n= Inf output all rows.
limma.results = topTable(fit2,coef = 1,n= Inf)
limma.results$gene = rownames(limma.results)
#Add PSM count values in the data frame
limma.results$PSMcount = psm.count.table[limma.results$gene,"count"]
head(limma.results)
Visualize the distribution of p-values by different analysis
plotting all proteins ranked by p-values.
plot(sort(-log10(limma.results$P.Value),decreasing = TRUE),
type="l",lty=2,lwd=2, ylab="-log10(p-value)",ylim = c(0,10),
xlab="Proteins ranked by p-values",
col="purple")
lines(sort(-log10(DEqMS.results$sca.P.Value),decreasing = TRUE),
lty=1,lwd=2,col="red")
lines(sort(-log10(anova.results$P.Value),decreasing = TRUE),
lty=2,lwd=2,col="blue")
lines(sort(-log10(ttest.results$P.Value),decreasing = TRUE),
lty=2,lwd=2,col="orange")
legend("topright",legend = c("Limma","DEqMS","Anova","t.test"),
col = c("purple","red","blue","orange"),lty=c(2,1,2,2),lwd=2)
plotting top 500 proteins ranked by p-values.
plot(sort(-log10(limma.results$P.Value),decreasing = TRUE)[1:500],
type="l",lty=2,lwd=2, ylab="-log10(p-value)", ylim = c(2,10),
xlab="Proteins ranked by p-values",
col="purple")
lines(sort(-log10(DEqMS.results$sca.P.Value),decreasing = TRUE)[1:500],
lty=1,lwd=2,col="red")
lines(sort(-log10(anova.results$P.Value),decreasing = TRUE)[1:500],
lty=2,lwd=2,col="blue")
lines(sort(-log10(ttest.results$P.Value),decreasing = TRUE)[1:500],
lty=2,lwd=2,col="orange")
legend("topright",legend = c("Limma","DEqMS","Anova","t.test"),
col = c("purple","red","blue","orange"),lty=c(2,1,2,2),lwd=2)
#install.packages('devtools')
#devtools::install_github("syspremed/exploBATCH",verbose=TRUE)
#require(exploBATCHbreast)
library("exploBATCH")
#?expBATCH
#data(Breast)
#data(batchBreast)
expBATCH(D=t(dataNormImpCom),batchCL=(factors),mindim=1,maxdim=7,method="ppcca")#,SDselect=2)
#expBATCH(D=Breast,batchCL=batchBreast,Conf=NA,mindim=5,maxdim=7,method="ppcca")#,SDselect=2)
#expBATCH(Breast,batchBreast)
#expBATCH(t(dataNormImpCom),factors)
```
```{r ROTS, echo = FALSE}
#install.packages("BiocManager")
#BiocManager::install("ROTS", version = "3.8")
dataNormImpCom<-read.delim("L:\\promec\\Elite\\LARS\\2014\\desember\\christiano\\plantaris-walker-hit.txt",row.names=1,sep="\t",header = T)
dataNormImpCom[is.na(dataNormImpCom)]=5
summary(dataNormImpCom)
factors<-c(rep(0,5), rep(1,5))
library(ROTS)
results = ROTS(data = dataNormImpCom, groups = factors , B = 1000 , K = 500 , seed = 1234)
write.csv(summary(results, fdr = 1),file=paste0(inpD,"L:\\promec\\Elite\\LARS\\2014\\desember\\christiano\\plantaris-walker-hit.rots.csv"), sep = "\t")
names(results)
summary(results, fdr = 1)
plot(results, fdr = 0.5, type = "volcano")
#P61203-2;P61203
#plot(results, fdr = 0.5, type = "heatmap")
```
```{r MSstats, echo = FALSE}
#https://bioconductor.org/packages/3.3/bioc/vignettes/MSstats/inst/doc/MSstats-manual.pdf
library('MSstats')
QuantData<-dataProcess(SRMRawData)
head(QuantData$ProcessedData)
## based on multiple comparisons (T1 vs T3; T1 vs T7; T1 vs T9)
comparison1<-matrix(c(-1,0,1,0,0,0,0,0,0,0),nrow=1)
comparison2<-matrix(c(-1,0,0,0,0,0,1,0,0,0),nrow=1)
comparison3<-matrix(c(-1,0,0,0,0,0,0,0,1,0),nrow=1)
comparison<-rbind(comparison1,comparison2, comparison3)
row.names(comparison)<-c("T3-T1","T7-T1","T9-T1")
testResultMultiComparisons<-groupComparison(contrast.matrix=comparison,data=QuantData)
## Calculate sample size for future experiments:
#(1) Minimal number of biological replicates per condition
designSampleSize(data=testResultMultiComparisons$fittedmodel,numSample=TRUE,
desiredFC=c(1.25,1.75),FDR=0.05,power=0.8)
#(2) Power calculation
designSampleSize(data=testResultMultiComparisons$fittedmodel,numSample=2,
desiredFC=c(1.25,1.75),FDR=0.05,power=TRUE)```
```
```{r SAM, echo = FALSE}
#https://github.com/MikeJSeo/SAM
install.packages(c("samr", "matrixStats", "GSA", "shiny", "shinyFiles", "openxlsx"))
source("http://bioconductor.org/biocLite.R")
biocLite("impute")
library(shiny)
library(shinyFiles)
runGitHub("SAM", "MikeJSeo")
```
```{r NA}
#impute(data, method = "mixed",randna = fData(naset)$randna,mar = "knn", mnar = "min")
md.pattern(datasel)
dataimp <- mice(datasel,m=length(colnames(datasel))/2,maxit=length(colnames(datasel)),meth='pmm',seed=1)
dataimp <- complete(dataimp,length(colnames(datasel))/2)
heatmap(as.matrix(dataimp),col=colscl)
```
```{r Scale}
datascale=t(scale(t(dataimp))) # takes away the polynomial in YFP data
heatmap(as.matrix(datascale),col=colscl)
```
```{r DistCor}
dataasmat<-data.matrix(datascale)
cor(data)
dissimilarityc <- 1 - cor(dataasmat,method = "s")
distancec <- as.dist(dissimilarityc)
col.clus <- hclust(distancec, "aver")
dissimilarityr <- 1 - cor(t(dataasmat),method = "s")
distancer <- as.dist(dissimilarityr)
row.clus <- hclust(distancer, "aver")
heatmap(as.matrix(datascale),col=colscl)
cr <- rainbow(nrow(dataasmat))
cc <- rainbow(ncol(dataasmat))
heatmap((na.omit(dataasmat)), RowSideColors = cr, ColSideColors = cc,Rowv = as.dendrogram(row.clus), Colv = as.dendrogram(col.clus),cexRow=1.5,cexCol=1.5 )
```
```{r Quantile}
dataasmat<-normalize.quantiles(dataasmat)
rn<-rownames(dataasmat)
cn<-colnames(dataasmat)
colnames(dataasmat)<-cn
rownames(dataasmat)<-rn
```
```{r AdjPval}
p.adjust(10^(-data$X.log10P),method = c("hochberg"), n = length(data$X.log10P))
p.adjust(data$pv,method = c("hochberg"), n = length(data$pv))
```
```{r interpolate}
data<-read.table("c:/Users/animeshs/Downloads/Sunshine hours.txt",sep='\t',header=T)
summary(data$SONNENSCHEINDAUER)
dp=approx(data$SONNENSCHEINDAUER)
summary(dp)
plot(dp$SONNENSCHEINDAUER,data$SONNENSCHEINDAUER)
install.packages('zoo')
library('zoo')
dp<-rollmean(data,1)
dp<-na.approx(data)
summary(dp)
write.table(dp,"c:/Users/animeshs/Downloads/SunshineDP.txt",sep='\t')
```
```{r lmfit}
source("https://bioconductor.org/biocLite.R")
biocLite("golubEsets")
library(golubEsets)
data()
data(golubTrain)
golubTrain
golub<-data.frame(golubTrain@exprs)
labelgb <- factor(c(rep("ALL",27),rep("AML",11)))
names(golub) <- labelgb
golub2<-log2(golub)
plot(golub2)
biocLite('limma')
library('limma')
fit3 = lmFit(golub2)
e3 = eBayes(fit3)
tab3<-topTable(e3, number=nrow(golub))
head(tab3)
fit3@.Data[[9]]
fit4 = lmFit(golub2, design)
```
```{r shuffle}
ecoli <- read.delim("Y:/felles/PROTEOMICS and XRAY/Ani/Christina/Strainssamples.txt", header=TRUE, na.strings='', sep="\t")
for (cnt in 1:6){
cnt
}
ecoli_shuffle <- ecoli_shuffle[sample(nrow(ecoli)),]
write.csv(file="Y:/felles/PROTEOMICS and XRAY/Ani/Christina/Strainssamples_shuffled_rn.csv",x=ecoli_shuffle,row.names = F)
```
```{r prot}
install.packages("PTXQC")
library("PTXQC")
help(package = "PTXQC")
vignette("PTXQC-InputData", package = "PTXQC")
txt_folder = "F:/promec/Elite/LARS/2016/desember/Lymphoma/Results"
r = createReport(txt_folder)
cat(paste0("\nReport generated as '", r$report_file, "'\n\n"))
```
```{r Cluster}
colscl <- colorRampPalette(c("darkblue", "chocolate"), space = "rgb")(100)
heatmap(na.omit(as.matrix(data)),col=colscl)
```
```{r SVA}
#https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btu375
#source("http://www.bioconductor.org/biocLite.R")
#biocLite(c("Biobase","sva","bladderbatch","snpStats"))
library(sva)
library(devtools)
library(Biobase)
library(bladderbatch)
library(snpStats)
data(bladderdata)
pheno = pData(bladderEset)
edata = exprs(bladderEset)
mod = model.matrix(~as.factor(cancer) + as.factor(batch),data=pheno)
fit = lm.fit(mod,t(edata))
hist(fit$coefficients[2,],col=2,breaks=100)
table(pheno$cancer,pheno$batch)
batch = pheno$batch
modcombat = model.matrix(~1, data=pheno)
modcancer = model.matrix(~cancer, data=pheno)
combat_edata = ComBat(dat=edata, batch=batch, mod=modcombat, par.prior=TRUE, prior.plots=FALSE)
combat_fit = lm.fit(modcancer,t(combat_edata))
hist(combat_fit$coefficients[2,],col=2,breaks=100)
plot(fit$coefficients[2,],combat_fit$coefficients[2,],col=2,
xlab="Linear Model",ylab="Combat",xlim=c(-5,5),ylim=c(-5,5))
abline(c(0,1),col=1,lwd=3)
mod = model.matrix(~cancer,data=pheno)
mod0 = model.matrix(~1, data=pheno)
sva1 = sva(edata,mod,mod0,n.sv=2)
summary(lm(sva1$sv ~ pheno$batch))
boxplot(sva1$sv[,2] ~ pheno$batch)
points(sva1$sv[,2] ~ jitter(as.numeric(pheno$batch)),col=as.numeric(pheno$batch))
modsv = cbind(mod,sva1$sv)
fitsv = lm.fit(modsv,t(edata))
par(mfrow=c(1,2))
plot(fitsv$coefficients[2,],combat_fit$coefficients[2,],col=2,
xlab="SVA",ylab="Combat",xlim=c(-5,5),ylim=c(-5,5))
abline(c(0,1),col=1,lwd=3)
plot(fitsv$coefficients[2,], fit$coefficients[2,],col=2,
xlab="SVA",ylab="linear model",xlim=c(-5,5),ylim=c(-5,5))
abline(c(0,1),col=1,lwd=3)
data(for.exercise)
controls <- rownames(subject.support)[subject.support$cc==0]
use <- seq(1, ncol(snps.10), 10)
ctl.10 <- snps.10[controls,use]
xxmat <- xxt(ctl.10, correct.for.missing=FALSE)
evv <- eigen(xxmat, symmetric=TRUE)
pcs <- evv$vectors[,1:5]
pop <- subject.support[controls,"stratum"]
plot(pcs[,1],pcs[,2],col=as.numeric(pop),
xlab="PC1",ylab="PC2")
legend(0,0.15,legend=levels(pop),pch=19,col=1:2)
```
---
title: "batch-effect-analysis"
author: "Ani"
date: "Monday, Feb 15, 2016"
output: html_document
---