-
Notifications
You must be signed in to change notification settings - Fork 696
/
Copy pathPalindroneStrings.java
57 lines (47 loc) · 1.88 KB
/
PalindroneStrings.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
package strings;
import java.util.ArrayList;
import java.util.List;
public class PalindroneStrings {
/*
* Given a string find all substrings that are palindromes.
* Input - "aabbbaa"
* Output - aa, bb, bbb, abbba, aabbbaa, bb,aa
* */
/*
* A naive solution of this problem is to find all substrings of a given string and check whether each substring
* is a palindrome or not. This solution has a complexity of O(n3).
*
* We can reduce the runtime of this algorithm to O(n2) by using the following approach.
* For each letter in the input string, start expanding to left and right while checking for even and
* odd length palindromes. Move to the next letter if we know a palindrome doesn't exist.
* We expand one character to the left and right and compare them. If both of them are equal,
* we print out the palindrome substring.
* */
/*
* Runtime Complexity - Polynomial, O(n2).
* Memory Complexity - Constant, O(1).
*
* */
public static List<String> findAllPalindromesInString(String input) {
List<String> words = new ArrayList<>();
for(int i=0; i<input.length(); ++i) {
words.addAll(findPalindromeInSubString(input, i-1, i+1));
words.addAll(findPalindromeInSubString(input, i, i+1));
}
return words;
}
private static List<String> findPalindromeInSubString(String input, int start, int end) {
List<String> words = new ArrayList<>();
for(;start >=0 && end<input.length(); --start, ++end) {
if(input.charAt(start) != input.charAt(end)) {
break;
}
words.add(input.substring(start, end+1));
}
return words;
}
public static void main(String[] args) {
String input = "aabbbaa";
System.out.println(findAllPalindromesInString(input));
}
}