-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference_video_face.py
167 lines (139 loc) · 5.56 KB
/
inference_video_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#!/usr/bin/python
# -*- coding: utf-8 -*-
# pylint: disable=C0103
# pylint: disable=E1101
import sys
import time
import os
import numpy as np
import tensorflow as tf
import cv2
import argparse
import face_recognition
import _thread
sys.path.append("..")
from utils import label_map_util
from utils import visualization_utils_color as vis_util
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = './model/frozen_inference_graph_face.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = './protos/face_label_map.pbtxt'
NUM_CLASSES = 2
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
###
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
def adjust_gamma(image, gamma=1.0):
invGamma = 1.0 / gamma
table = np.array([((i / 255.0) ** invGamma) * 255
for i in np.arange(0, 256)]).astype("uint8")
return cv2.LUT(image, table)
def run_yolo(out_filename):
out = None
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
with detection_graph.as_default():
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(graph=detection_graph, config=config) as sess:
frame_num = 1490;
while frame_num:
frame_num -= 1
ret, image = cap.read()
if ret == 0:
break
if out is None:
[h, w] = image.shape[:2]
out = cv2.VideoWriter(out_filename, 0, 25.0, (w, h))
# if int(cap.get(cv2.CAP_PROP_POS_FRAMES)) % 10 == 0:
image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# result image with boxes and labels on it.]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
start_time = time.time()
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
elapsed_time = time.time() - start_time
sys.stdout.write('Inference Time Cost: %s\r' % (format(elapsed_time)))
sys.stdout.flush()
# Do a gamma correction for darker images
# pass the gamma corrected image frame
#TODO Revisit this -- Face Rec not working on gamma correction
# gamma = 1.5
# adjusted = adjust_gamma(image, gamma=gamma)
vis_util.visualize_boxes_and_labels_on_image_array(
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
known_face_encodings,
known_face_names,
use_normalized_coordinates=True,
line_thickness=4)
out.write(image)
cap.release()
out.release()
def run():
timestr = time.strftime("%Y%m%d-%H%M%S")
video_file = "./media/detection_vid_" + timestr + ".avi"
run_yolo(video_file)
#########
# FUNCTION DEFINITIONS END HERE
#########
#Init Face encoding data
known_face_encodings = []
known_face_names = []
source = './POI'
# List of allowed image extensions
valid_images = [".jpg",".png"]
### Get the sample Images and save face_encodings
for root, dirs, filenames in os.walk(source):
for filename in filenames:
ext = os.path.splitext(filename)[1]
if ext.lower() not in valid_images:
continue
fullpath = os.path.join(source, filename)
poi_image = face_recognition.load_image_file(fullpath)
poi_image_face_encoding = face_recognition.face_encodings(poi_image)[0]
known_face_encodings.append(poi_image_face_encoding)
known_face_names.append(os.path.splitext(filename)[0])
## Set Options as per arguments
parser = argparse.ArgumentParser()
parser.add_argument("--mode", help="Video / Camera / IP")
parser.add_argument("--file_path", help="Optional : Video File Path. Required if mode = Video only")
parser.add_argument("--uname", help="username")
parser.add_argument("--secret", help="secret")
parser.add_argument("--addr", help="ip-address")
args = parser.parse_args()
if args.mode in ('Video', 'video'):
if args.file_path:
cap = cv2.VideoCapture(args.file_path)
elif args.mode in ('camera', 'Camera'):
cap = cv2.VideoCapture(0)
elif args.mode in ('ip', 'IP'):
if args.addr and args.uname and args.secret:
url = 'rtsp://' + args.uname + ':' + args.secret + '@' + args.addr
cap = cv2.VideoCapture(url)
else:
print('Use -h for help')
sys.exit()
#START
#TODO Run in multithread
run()