forked from GucciFlipFlops1917/wav2lip-hq-updated-ESRGAN
-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathinference.py
781 lines (618 loc) · 23.3 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
print("\rloading torch ", end="")
import torch
print("\rloading numpy ", end="")
import numpy as np
print("\rloading Image ", end="")
from PIL import Image
print("\rloading argparse ", end="")
import argparse
print("\rloading configparser", end="")
import configparser
print("\rloading math ", end="")
import math
print("\rloading os ", end="")
import os
print("\rloading subprocess ", end="")
import subprocess
print("\rloading pickle ", end="")
import pickle
print("\rloading cv2 ", end="")
import cv2
print("\rloading audio ", end="")
import audio
print("\rloading RetinaFace ", end="")
from batch_face import RetinaFace
print("\rloading re ", end="")
import re
print("\rloading partial ", end="")
from functools import partial
print("\rloading tqdm ", end="")
from tqdm import tqdm
print("\rloading warnings ", end="")
import warnings
warnings.filterwarnings(
"ignore", category=UserWarning, module="torchvision.transforms.functional_tensor"
)
print("\rloading upscale ", end="")
from enhance import upscale
print("\rloading load_sr ", end="")
from enhance import load_sr
print("\rloading load_model ", end="")
from easy_functions import load_model, g_colab
print("\rimports loaded! ")
device = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
gpu_id = 0 if torch.cuda.is_available() else -1
if device == 'cpu':
print('Warning: No GPU detected so inference will be done on the CPU which is VERY SLOW!')
parser = argparse.ArgumentParser(
description="Inference code to lip-sync videos in the wild using Wav2Lip models"
)
parser.add_argument(
"--checkpoint_path",
type=str,
help="Name of saved checkpoint to load weights from",
required=True,
)
parser.add_argument(
"--segmentation_path",
type=str,
default="checkpoints/face_segmentation.pth",
help="Name of saved checkpoint of segmentation network",
required=False,
)
parser.add_argument(
"--face",
type=str,
help="Filepath of video/image that contains faces to use",
required=True,
)
parser.add_argument(
"--audio",
type=str,
help="Filepath of video/audio file to use as raw audio source",
required=True,
)
parser.add_argument(
"--outfile",
type=str,
help="Video path to save result. See default for an e.g.",
default="results/result_voice.mp4",
)
parser.add_argument(
"--static",
type=bool,
help="If True, then use only first video frame for inference",
default=False,
)
parser.add_argument(
"--fps",
type=float,
help="Can be specified only if input is a static image (default: 25)",
default=25.0,
required=False,
)
parser.add_argument(
"--pads",
nargs="+",
type=int,
default=[0, 10, 0, 0],
help="Padding (top, bottom, left, right). Please adjust to include chin at least",
)
parser.add_argument(
"--wav2lip_batch_size", type=int, help="Batch size for Wav2Lip model(s)", default=1
)
parser.add_argument(
"--out_height",
default=480,
type=int,
help="Output video height. Best results are obtained at 480 or 720",
)
parser.add_argument(
"--crop",
nargs="+",
type=int,
default=[0, -1, 0, -1],
help="Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. "
"Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width",
)
parser.add_argument(
"--box",
nargs="+",
type=int,
default=[-1, -1, -1, -1],
help="Specify a constant bounding box for the face. Use only as a last resort if the face is not detected."
"Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).",
)
parser.add_argument(
"--rotate",
default=False,
action="store_true",
help="Sometimes videos taken from a phone can be flipped 90deg. If true, will flip video right by 90deg."
"Use if you get a flipped result, despite feeding a normal looking video",
)
parser.add_argument(
"--nosmooth",
type=str,
default=False,
help="Prevent smoothing face detections over a short temporal window",
)
parser.add_argument(
"--no_seg",
default=False,
action="store_true",
help="Prevent using face segmentation",
)
parser.add_argument(
"--no_sr", default=False, action="store_true", help="Prevent using super resolution"
)
parser.add_argument(
"--sr_model",
type=str,
default="gfpgan",
help="Name of upscaler - gfpgan or RestoreFormer",
required=False,
)
parser.add_argument(
"--fullres",
default=3,
type=int,
help="used only to determine if full res is used so that no resizing needs to be done if so",
)
parser.add_argument(
"--debug_mask",
type=str,
default=False,
help="Makes background grayscale to see the mask better",
)
parser.add_argument(
"--preview_settings", type=str, default=False, help="Processes only one frame"
)
parser.add_argument(
"--mouth_tracking",
type=str,
default=False,
help="Tracks the mouth in every frame for the mask",
)
parser.add_argument(
"--mask_dilation",
default=150,
type=float,
help="size of mask around mouth",
required=False,
)
parser.add_argument(
"--mask_feathering",
default=151,
type=int,
help="amount of feathering of mask around mouth",
required=False,
)
parser.add_argument(
"--quality",
type=str,
help="Choose between Fast, Improved and Enhanced",
default="Fast",
)
with open(os.path.join("checkpoints", "predictor.pkl"), "rb") as f:
predictor = pickle.load(f)
with open(os.path.join("checkpoints", "mouth_detector.pkl"), "rb") as f:
mouth_detector = pickle.load(f)
# creating variables to prevent failing when a face isn't detected
kernel = last_mask = x = y = w = h = None
g_colab = g_colab()
if not g_colab:
# Load the config file
config = configparser.ConfigParser()
config.read('config.ini')
# Get the value of the "preview_window" variable
preview_window = config.get('OPTIONS', 'preview_window')
all_mouth_landmarks = []
model = detector = detector_model = None
def do_load(checkpoint_path):
global model, detector, detector_model
model = load_model(checkpoint_path)
detector = RetinaFace(
gpu_id=gpu_id, model_path="checkpoints/mobilenet.pth", network="mobilenet"
)
detector_model = detector.model
def face_rect(images):
face_batch_size = 8
num_batches = math.ceil(len(images) / face_batch_size)
prev_ret = None
for i in range(num_batches):
batch = images[i * face_batch_size : (i + 1) * face_batch_size]
all_faces = detector(batch) # return faces list of all images
for faces in all_faces:
if faces:
box, landmarks, score = faces[0]
prev_ret = tuple(map(int, box))
yield prev_ret
def create_tracked_mask(img, original_img):
global kernel, last_mask, x, y, w, h # Add last_mask to global variables
# Convert color space from BGR to RGB if necessary
cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
cv2.cvtColor(original_img, cv2.COLOR_BGR2RGB, original_img)
# Detect face
faces = mouth_detector(img)
if len(faces) == 0:
if last_mask is not None:
last_mask = cv2.resize(last_mask, (img.shape[1], img.shape[0]))
mask = last_mask # use the last successful mask
else:
cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
return img, None
else:
face = faces[0]
shape = predictor(img, face)
# Get points for mouth
mouth_points = np.array(
[[shape.part(i).x, shape.part(i).y] for i in range(48, 68)]
)
# Calculate bounding box dimensions
x, y, w, h = cv2.boundingRect(mouth_points)
# Set kernel size as a fraction of bounding box size
kernel_size = int(max(w, h) * args.mask_dilation)
# if kernel_size % 2 == 0: # Ensure kernel size is odd
# kernel_size += 1
# Create kernel
kernel = np.ones((kernel_size, kernel_size), np.uint8)
# Create binary mask for mouth
mask = np.zeros(img.shape[:2], dtype=np.uint8)
cv2.fillConvexPoly(mask, mouth_points, 255)
last_mask = mask # Update last_mask with the new mask
# Dilate the mask
dilated_mask = cv2.dilate(mask, kernel)
# Calculate distance transform of dilated mask
dist_transform = cv2.distanceTransform(dilated_mask, cv2.DIST_L2, 5)
# Normalize distance transform
cv2.normalize(dist_transform, dist_transform, 0, 255, cv2.NORM_MINMAX)
# Convert normalized distance transform to binary mask and convert it to uint8
_, masked_diff = cv2.threshold(dist_transform, 50, 255, cv2.THRESH_BINARY)
masked_diff = masked_diff.astype(np.uint8)
# make sure blur is an odd number
blur = args.mask_feathering
if blur % 2 == 0:
blur += 1
# Set blur size as a fraction of bounding box size
blur = int(max(w, h) * blur) # 10% of bounding box size
if blur % 2 == 0: # Ensure blur size is odd
blur += 1
masked_diff = cv2.GaussianBlur(masked_diff, (blur, blur), 0)
# Convert numpy arrays to PIL Images
input1 = Image.fromarray(img)
input2 = Image.fromarray(original_img)
# Convert mask to single channel where pixel values are from the alpha channel of the current mask
mask = Image.fromarray(masked_diff)
# Ensure images are the same size
assert input1.size == input2.size == mask.size
# Paste input1 onto input2 using the mask
input2.paste(input1, (0, 0), mask)
# Convert the final PIL Image back to a numpy array
input2 = np.array(input2)
# input2 = cv2.cvtColor(input2, cv2.COLOR_BGR2RGB)
cv2.cvtColor(input2, cv2.COLOR_BGR2RGB, input2)
return input2, mask
def create_mask(img, original_img):
global kernel, last_mask, x, y, w, h # Add last_mask to global variables
# Convert color space from BGR to RGB if necessary
cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
cv2.cvtColor(original_img, cv2.COLOR_BGR2RGB, original_img)
if last_mask is not None:
last_mask = np.array(last_mask) # Convert PIL Image to numpy array
last_mask = cv2.resize(last_mask, (img.shape[1], img.shape[0]))
mask = last_mask # use the last successful mask
mask = Image.fromarray(mask)
else:
# Detect face
faces = mouth_detector(img)
if len(faces) == 0:
cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
return img, None
else:
face = faces[0]
shape = predictor(img, face)
# Get points for mouth
mouth_points = np.array(
[[shape.part(i).x, shape.part(i).y] for i in range(48, 68)]
)
# Calculate bounding box dimensions
x, y, w, h = cv2.boundingRect(mouth_points)
# Set kernel size as a fraction of bounding box size
kernel_size = int(max(w, h) * args.mask_dilation)
# if kernel_size % 2 == 0: # Ensure kernel size is odd
# kernel_size += 1
# Create kernel
kernel = np.ones((kernel_size, kernel_size), np.uint8)
# Create binary mask for mouth
mask = np.zeros(img.shape[:2], dtype=np.uint8)
cv2.fillConvexPoly(mask, mouth_points, 255)
# Dilate the mask
dilated_mask = cv2.dilate(mask, kernel)
# Calculate distance transform of dilated mask
dist_transform = cv2.distanceTransform(dilated_mask, cv2.DIST_L2, 5)
# Normalize distance transform
cv2.normalize(dist_transform, dist_transform, 0, 255, cv2.NORM_MINMAX)
# Convert normalized distance transform to binary mask and convert it to uint8
_, masked_diff = cv2.threshold(dist_transform, 50, 255, cv2.THRESH_BINARY)
masked_diff = masked_diff.astype(np.uint8)
if not args.mask_feathering == 0:
blur = args.mask_feathering
# Set blur size as a fraction of bounding box size
blur = int(max(w, h) * blur) # 10% of bounding box size
if blur % 2 == 0: # Ensure blur size is odd
blur += 1
masked_diff = cv2.GaussianBlur(masked_diff, (blur, blur), 0)
# Convert mask to single channel where pixel values are from the alpha channel of the current mask
mask = Image.fromarray(masked_diff)
last_mask = mask # Update last_mask with the final mask after dilation and feathering
# Convert numpy arrays to PIL Images
input1 = Image.fromarray(img)
input2 = Image.fromarray(original_img)
# Resize mask to match image size
# mask = Image.fromarray(mask)
mask = mask.resize(input1.size)
# Ensure images are the same size
assert input1.size == input2.size == mask.size
# Paste input1 onto input2 using the mask
input2.paste(input1, (0, 0), mask)
# Convert the final PIL Image back to a numpy array
input2 = np.array(input2)
# input2 = cv2.cvtColor(input2, cv2.COLOR_BGR2RGB)
cv2.cvtColor(input2, cv2.COLOR_BGR2RGB, input2)
return input2, mask
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T :]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def face_detect(images, results_file="last_detected_face.pkl"):
# If results file exists, load it and return
if os.path.exists(results_file):
print("Using face detection data from last input")
with open(results_file, "rb") as f:
return pickle.load(f)
results = []
pady1, pady2, padx1, padx2 = args.pads
tqdm_partial = partial(tqdm, position=0, leave=True)
for image, (rect) in tqdm_partial(
zip(images, face_rect(images)),
total=len(images),
desc="detecting face in every frame",
ncols=100,
):
if rect is None:
cv2.imwrite(
"temp/faulty_frame.jpg", image
) # check this frame where the face was not detected.
raise ValueError(
"Face not detected! Ensure the video contains a face in all the frames."
)
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
if str(args.nosmooth) == "False":
boxes = get_smoothened_boxes(boxes, T=5)
results = [
[image[y1:y2, x1:x2], (y1, y2, x1, x2)]
for image, (x1, y1, x2, y2) in zip(images, boxes)
]
# Save results to file
with open(results_file, "wb") as f:
pickle.dump(results, f)
return results
def datagen(frames, mels):
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
print("\r" + " " * 100, end="\r")
if args.box[0] == -1:
if not args.static:
face_det_results = face_detect(frames) # BGR2RGB for CNN face detection
else:
face_det_results = face_detect([frames[0]])
else:
print("Using the specified bounding box instead of face detection...")
y1, y2, x1, x2 = args.box
face_det_results = [[f[y1:y2, x1:x2], (y1, y2, x1, x2)] for f in frames]
for i, m in enumerate(mels):
idx = 0 if args.static else i % len(frames)
frame_to_save = frames[idx].copy()
face, coords = face_det_results[idx].copy()
face = cv2.resize(face, (args.img_size, args.img_size))
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
if len(img_batch) >= args.wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, args.img_size // 2 :] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0
mel_batch = np.reshape(
mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]
)
yield img_batch, mel_batch, frame_batch, coords_batch
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, args.img_size // 2 :] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0
mel_batch = np.reshape(
mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]
)
yield img_batch, mel_batch, frame_batch, coords_batch
mel_step_size = 16
def _load(checkpoint_path):
if device != "cpu":
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(
checkpoint_path, map_location=lambda storage, loc: storage
)
return checkpoint
def main():
args.img_size = 96
frame_number = 11
if os.path.isfile(args.face) and args.face.split(".")[1] in ["jpg", "png", "jpeg"]:
args.static = True
if not os.path.isfile(args.face):
raise ValueError("--face argument must be a valid path to video/image file")
elif args.face.split(".")[1] in ["jpg", "png", "jpeg"]:
full_frames = [cv2.imread(args.face)]
fps = args.fps
else:
if args.fullres != 1:
print("Resizing video...")
video_stream = cv2.VideoCapture(args.face)
fps = video_stream.get(cv2.CAP_PROP_FPS)
full_frames = []
while 1:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
if args.fullres != 1:
aspect_ratio = frame.shape[1] / frame.shape[0]
frame = cv2.resize(
frame, (int(args.out_height * aspect_ratio), args.out_height)
)
if args.rotate:
frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)
y1, y2, x1, x2 = args.crop
if x2 == -1:
x2 = frame.shape[1]
if y2 == -1:
y2 = frame.shape[0]
frame = frame[y1:y2, x1:x2]
full_frames.append(frame)
if not args.audio.endswith(".wav"):
print("Converting audio to .wav")
subprocess.check_call(
[
"ffmpeg",
"-y",
"-loglevel",
"error",
"-i",
args.audio,
"temp/temp.wav",
]
)
args.audio = "temp/temp.wav"
print("analysing audio...")
wav = audio.load_wav(args.audio, 16000)
mel = audio.melspectrogram(wav)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError(
"Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again"
)
mel_chunks = []
mel_idx_multiplier = 80.0 / fps
i = 0
while 1:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size :])
break
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
i += 1
full_frames = full_frames[: len(mel_chunks)]
if str(args.preview_settings) == "True":
full_frames = [full_frames[0]]
mel_chunks = [mel_chunks[0]]
print(str(len(full_frames)) + " frames to process")
batch_size = args.wav2lip_batch_size
if str(args.preview_settings) == "True":
gen = datagen(full_frames, mel_chunks)
else:
gen = datagen(full_frames.copy(), mel_chunks)
for i, (img_batch, mel_batch, frames, coords) in enumerate(
tqdm(
gen,
total=int(np.ceil(float(len(mel_chunks)) / batch_size)),
desc="Processing Wav2Lip",
ncols=100,
)
):
if i == 0:
if not args.quality == "Fast":
print(
f"mask size: {args.mask_dilation}, feathering: {args.mask_feathering}"
)
if not args.quality == "Improved":
print("Loading", args.sr_model)
run_params = load_sr()
print("Starting...")
frame_h, frame_w = full_frames[0].shape[:-1]
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter("temp/result.mp4", fourcc, fps, (frame_w, frame_h))
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.0
for p, f, c in zip(pred, frames, coords):
# cv2.imwrite('temp/f.jpg', f)
y1, y2, x1, x2 = c
if (
str(args.debug_mask) == "True"
): # makes the background black & white so you can see the mask better
f = cv2.cvtColor(f, cv2.COLOR_BGR2GRAY)
f = cv2.cvtColor(f, cv2.COLOR_GRAY2BGR)
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
cf = f[y1:y2, x1:x2]
if args.quality == "Enhanced":
p = upscale(p, run_params)
if args.quality in ["Enhanced", "Improved"]:
if str(args.mouth_tracking) == "True":
p, last_mask = create_tracked_mask(p, cf)
else:
p, last_mask = create_mask(p, cf)
f[y1:y2, x1:x2] = p
if not g_colab:
# Display the frame
if preview_window == "Face":
cv2.imshow("face preview - press Q to abort", p)
elif preview_window == "Full":
cv2.imshow("full preview - press Q to abort", f)
elif preview_window == "Both":
cv2.imshow("face preview - press Q to abort", p)
cv2.imshow("full preview - press Q to abort", f)
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
exit() # Exit the loop when 'Q' is pressed
if str(args.preview_settings) == "True":
cv2.imwrite("temp/preview.jpg", f)
if not g_colab:
cv2.imshow("preview - press Q to close", f)
if cv2.waitKey(-1) & 0xFF == ord('q'):
exit() # Exit the loop when 'Q' is pressed
else:
out.write(f)
# Close the window(s) when done
cv2.destroyAllWindows()
out.release()
if str(args.preview_settings) == "False":
print("converting to final video")
subprocess.check_call([
"ffmpeg",
"-y",
"-loglevel",
"error",
"-i",
"temp/result.mp4",
"-i",
args.audio,
"-c:v",
"libx264",
args.outfile
])
if __name__ == "__main__":
args = parser.parse_args()
do_load(args.checkpoint_path)
main()