-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix_game.py
56 lines (37 loc) · 1.34 KB
/
matrix_game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
import time
def rotate_l(matrix):
return np.hstack((matrix[:, 1:], matrix[:, 0].reshape(-1, 1)))
def rotate_r(matrix):
return np.hstack((matrix[:, -1].reshape(-1, 1), matrix[:, :-1]))
def vertical_collector(dimension):
ii = np.identity(dimension, dtype=int)
return rotate_l(ii) + rotate_r(ii)
def neighbor_transform(state):
operator = vertical_collector(state.shape[0])
verticals = np.dot(operator, state)
horizontals = np.dot(state, operator)
left_diags = np.dot(operator, rotate_r(state))
right_diags = np.dot(operator, rotate_l(state))
return horizontals + verticals + left_diags + right_diags
def advance(state):
neighbor_sum = neighbor_transform(state)
sum_rule = state + neighbor_sum == 3
product_rule = state * neighbor_sum == 3
return np.array(sum_rule | product_rule, dtype=int)
def random_state(dimension):
return np.floor(2 * np.random.rand(dimension, dimension))
def draw(state):
draw_map = {0: " ", 1: "X"}
print('\x1b[2J')
print("-" * (state.shape[0] * 2 - 1))
for row in state:
print(str.join(" ", [draw_map[e] for e in row]))
print("-" * (state.shape[0] * 2 - 1))
def play(state):
while True:
draw(state)
state = advance(state)
time.sleep(.1)
def random_play(dimension):
play(random_state(dimension))