-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathport_mv_0.py
250 lines (193 loc) · 7 KB
/
port_mv_0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import pandas as pd
import numpy as np
from numpy import *
import yfinance as yf
import matplotlib.pyplot as plt
import matplotlib.dates as mpl_dates
import seaborn as sns
from scipy.optimize import minimize
from operator import itemgetter
# Fetching historic returns (10 BR stocks)
tickers_br = ['VALE3.SA', 'ITUB4.SA', 'PETR4.SA', 'ABEV3.SA', 'RADL3.SA',
'RENT3.SA', 'JBSS3.SA', 'EQTL3.SA', 'KLBN11.SA', 'TOTS3.SA']
yfinance_dict = {'tickers': sorted(tickers_br, reverse=False),
'start': '2015-01-01',
'end': '2020-10-30',
'interval': '1d'}
df_main = yf.download(**yfinance_dict,)
df_main.index = pd.to_datetime(df_main.index)
# Slicing and cleaning DataFrame --> Price Series
p_options = ['Adj Close', 'Close']
df_ps = df_main.loc[:, [p_options[1]]].ffill(axis=0)
df_ps.columns = df_ps.columns.droplevel()
df_ps.columns = [tick[:-3] for tick in list(df_ps.columns)]
print('\n')
print(df_ps.info())
print('\n')
print(df_ps.head())
print('\n')
# (1) Returns (log)
df_returns = np.log(df_ps).diff(1).dropna(how='all')
mu_returns = df_returns.mean()
mu_dict = {ticker: val for ticker, val in mu_returns.iteritems()}
for k, v in mu_dict.items():
print('Ticker: {}'.format(k), '\t', 'Average return: {:.4f} %'.format(v*100))
# (2) Variance - Covariance Matrix (numpy) + correlation between asset returns
covar_returns = df_returns.cov()
correl_returns = df_returns.corr()
mask_covar = np.triu(np.ones_like(correl_returns, dtype=np.bool))
f, ax = plt.subplots(figsize=(10, 8))
cmap_i = sns.diverging_palette(h_neg=220, h_pos=10, as_cmap=True)
sns.heatmap(data=correl_returns, mask=mask_covar, cmap=cmap_i, center=0,
square=True, linewidths=0.5, cbar_kws={"shrink": 0.8}, annot=True)
plt.title('Correlation matrix')
#plt.show()
# Constrained Optimization (Mean-Variance Utility (missing lambda (risk aversion?))
# (-) Objective function Q(w, f) = E[r] - (0.5)*(lambda)*Var[r] = expected_return - (0.5)*(lambda)*(port_variance)
# (i) Target volatility g(w, f) = port_variance - sigma^2; g(w, f) = 0
# (ii) Max portfolio leverage h(w, f) = np.sum(abs(weights)) - C; h(w, f) <= 0
# Numerical Python - Ch. 6
# Sequential Least Squares SQuares Programming (SLSQP) Algorithm
def get_ret_vol_mvutility(weights, d_ra):
'''
d_ra: risk aversion parameter
d_ra --> infinity --> minimum variance portfolio
arg min problem --> d_ra * port_variance -------> d_ra^(-1) * expected_return
'''
weights = np.array(weights)
expected_return = np.sum(np.array(mean(df_returns, axis=0))*weights*252)
port_variance = weights.T@np.array(df_returns.cov())*252@weights
Q = (0.5)*port_variance - (d_ra**(-1))*expected_return
return np.array([expected_return, port_variance, Q])
def check_sum(C):
'''
C: Max leverage
'''
return lambda weights: C - np.sum(abs(weights))
def target_vol(sigma):
'''
sigma: target volatility
'''
return lambda weights: get_ret_vol_mvutility(weights, d_ra=1)[1] - (sigma**2)
def get_bounds(weights, LB, UB):
'''
LB: Lower bound
UB: Upper bound
'''
w_B = np.array(tuple([(LB, UB) for w in list(range(len(weights)))]))
return w_B
g_cons = ({'type': 'eq',
'fun': target_vol(sigma=0.15)})
h_cons = ({'type': 'ineq',
'fun': check_sum(C=1.5)})
mvutility_L = []
s_n = 0
n_trials = 10
for i in range(n_trials):
'''
Attempting to find true global minima via iteration
'''
init_weights = np.random.uniform(low=-0.125, high=0.125, size=(len(mu_dict),))
G_bounds = get_bounds(weights=init_weights, LB=-0.125, UB=0.125)
opt_dict = {'fun': lambda weights: get_ret_vol_mvutility(weights, d_ra=1)[2],
'x0': init_weights,
'method': 'SLSQP',
'bounds': G_bounds,
'constraints': [h_cons, g_cons]}
try:
opt_results = minimize(**opt_dict)
except ValueError as e:
continue
opt_weights = opt_results.x
opt_success = opt_results.success
opt_mvutility = opt_results.fun
if (opt_success == True):
mvutility_L.append(tuple((opt_weights, opt_mvutility)))
s_n += 1
else:
continue
opt_check = get_ret_vol_mvutility(weights=opt_weights, d_ra=1)
print('\n')
print(opt_results)
print('\n')
print('Portfolio Return: {:.4f}%'.format(opt_check[0]*100))
print('Portfolio Volatility: {:.4f}%'.format(np.sqrt(opt_check[1])*100))
print('(?) MV Utility: {:.4f}'.format(opt_check[2]))
print('Sum(weights): {}'.format(np.sum(opt_weights)))
print('Trial #: {}'.format(i))
weights_max_mvutility = min(np.array(mvutility_L), key=itemgetter(1))
opt_W = weights_max_mvutility[0]
opt_MV = weights_max_mvutility[1]
sol_Q = get_ret_vol_mvutility(weights=opt_W, d_ra=1)
Q_returns = sol_Q[0]
Q_vol = np.sqrt(sol_Q[1])
Q_max = sol_Q[2]
Q_df = pd.DataFrame(opt_W, index=mu_returns.index, columns=['MV Weights'])
print('\n====== Solution ======')
print('\n# Trials: {}'.format(n_trials))
print('Algorithm success rate: {:.2f}%'.format(s_n*100/n_trials))
print('\nMax. MV Utility: {:.8f}'.format(Q_max))
print('Max. Expected Return: {:.8f}%'.format(Q_returns*100))
print('Volatility: {:.8f}%'.format(Q_vol*100))
print('Sum(Weights): {}'.format(np.sum(opt_W)))
print('\n====== Final weights ======')
print('\n')
print(Q_df)
# Risk Parity Portfolio # (Demo)
# (MRC) Marginal risk contribution
# (RC) Risk contribution
# (RRC) Relative risk contribution
# Risk decomposition ...
'''
# Risk Budgeting Approach # (Demo)
Risk decomposition ...
(MRC) - Marginal risk contribution
- Measures the sensitivity of the portfolio volatility to the ith asset weight.
MRC_i = sum(W_j*Cov(R_i,R_j)) / (sigma(R_p))
(RC) - Risk contribution
Cov(R_i, R_p) = sum(W_j*Cov(R_i, R_j)); (Covariance function is bilinear)
RC_i = W_i * sum(W_j*Cov(R_i,R_j)) / (sigma(R_p))
(RRC) - Relative risk contribution
- (RC_i/sigma(R_p))
'''
port_vol = np.sqrt(get_ret_vol_mvutility(weights=opt_W, d_ra=1)[1])
covar = np.array(df_returns.cov())
rc = []
rrc = []
for N, w in enumerate(opt_W):
# Risk contribution
rc_i = (252*w*np.sum([w_j*covar[N, n] for n, w_j in enumerate(opt_W)]))/(port_vol)
rc.append(rc_i)
# Relative risk contribution
rrc.append(rc_i/port_vol)
Q_df['RC'] = rc
Q_df['RRC'] = rrc
print('\n')
print(Q_df)
print('Sum(RC): {}, Portfolio volatility: {}'.format(np.sum(rc), port_vol))
print('Sum(RRC): {}'.format(np.sum(rrc)))
plt.figure(figsize=(10, 6))
plt.bar(x=Q_df.index, height=Q_df['MV Weights'])
plt.title('Weights')
plt.xlabel('Stocks')
plt.figure(figsize=(10,6))
plt.bar(x=Q_df.index, height=Q_df['RRC'])
plt.title('Relative Risk Contribution')
plt.xlabel('Stocks')
plt.show()
'''
Goal: to allocate the weights so that all the assets contribute the same amount of risk,
effectively "equalizing" the risk
'''
'''
Questions...
Estimating returns and covariance matrix
Stability issues
Noise
Correlations change over time
Optimal portfolios are sensitive to estimation errors ... (inputs)
Resampling techniques...
RP approach
HRP approach ...
Tree
'''