-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathutil.py
260 lines (229 loc) · 8.81 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import re
import torch
import torch.nn.functional as F
import json
import collections
import numpy as np
def tokenize(
seq,
tokenizer,
add_special_tokens=True,
max_length=10,
dynamic_padding=True,
truncation=True,
):
"""
:param seq: sequence of sequences of text
:param tokenizer: bert_tokenizer
:return: torch tensor padded up to length max_length of bert tokens
"""
tokens = tokenizer.batch_encode_plus(
seq,
add_special_tokens=add_special_tokens,
max_length=max_length,
padding="longest" if dynamic_padding else "max_length",
truncation=truncation,
)["input_ids"]
return torch.tensor(tokens, dtype=torch.long)
def compute_aggreeings(topk, answers, thresholds, names, metrics, ivqa=False):
""" Updates metrics dictionary by computing aggreeings for different thresholds """
if not ivqa:
for i, x in enumerate(thresholds):
agreeingsx = (topk[:, :x] == answers[:, :x]).sum().item()
metrics[names[i]] += agreeingsx
else:
for i, x in enumerate(thresholds):
predicted = F.one_hot(topk[:, :x], num_classes=answers.shape[-1]).sum(1)
metrics[names[i]] += (predicted * answers).max(1)[0].sum().item()
return metrics
class AverageMeter:
""" Computes and stores the average and current value for training stats """
def __init__(self):
self.reset()
def reset(self):
""" Reset all statistics """
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
""" Update statistics """
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def get_mask(lengths, max_length):
""" Computes a batch of padding masks given batched lengths """
mask = 1 * (
torch.arange(max_length).unsqueeze(1).to(lengths.device) < lengths
).transpose(0, 1)
return mask
def compute_a2v(vocab_path, bert_tokenizer, amax_words):
""" Precomputes GloVe answer embeddings for all answers in the vocabulary """
a2id = json.load(open(vocab_path, "r"))
id2a = {v: k for k, v in a2id.items()}
a2v = tokenize(
list(a2id.keys()),
bert_tokenizer,
add_special_tokens=True,
max_length=amax_words,
dynamic_padding=True,
truncation=True,
)
if torch.cuda.is_available():
a2v = a2v.cuda() # (vocabulary_size, 1, we_dim)
return a2id, id2a, a2v
def mask_tokens(inputs, tokenizer, mlm_probability):
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
if tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the --mlm flag if you want to use this tokenizer."
)
labels = inputs.clone()
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
probability_matrix = torch.full(labels.shape, mlm_probability)
special_tokens_mask = [
tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True)
for val in labels.tolist()
]
probability_matrix.masked_fill_(
torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0
)
if tokenizer._pad_token is not None:
padding_mask = labels.eq(tokenizer.pad_token_id)
probability_matrix.masked_fill_(padding_mask, value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = (
torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
)
inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = (
torch.bernoulli(torch.full(labels.shape, 0.5)).bool()
& masked_indices
& ~indices_replaced
)
random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def get_types(dataset):
""" Type2Id mapping for VideoQA datasets """
if dataset == "tgif":
return {"what": 0, "how": 1, "color": 2, "where": 3}
elif dataset == "activitynet":
return {
"motion": 0,
"spatial": 1,
"temporal": 2,
"yesno": 3,
"color": 4,
"object": 5,
"location": 6,
"number": 7,
"other": 8,
}
elif dataset == "msvd" or dataset == "msrvtt":
return {"what": 0, "how": 1, "color": 2, "where": 3, "who": 4, "when": 5}
elif dataset == "ivqa":
return {"scenes": 0}
else:
raise NotImplementedError
def get_most_common(loader, ivqa=False, n=4):
""" Outputs most common answers and splits in n parts the answers depending on their frequency"""
if ivqa:
ans = []
for a1, a2, a3, a4, a5 in zip(
list(loader.dataset.data["answer1"]),
list(loader.dataset.data["answer2"]),
list(loader.dataset.data["answer3"]),
list(loader.dataset.data["answer4"]),
list(loader.dataset.data["answer5"]),
):
counteri = collections.Counter([a1, a2, a3, a4, a5])
for w in counteri:
if (
counteri[w] >= 2
): # an answer is considered as right if it has been annotated by two workers
ans.append(w)
else:
ans = list(loader.dataset.data["answer"])
most_common = collections.Counter(ans).most_common()
total = sum(x[1] for x in most_common)
splits = [0] * (n + 1)
j = 0
for i in range(n):
cur_total = 0
while j < len(most_common) and cur_total < total / n:
cur_total += most_common[j][1]
j += 1
splits[i + 1] = j
return most_common, splits, total
def compute_word_stats(
topk, answers, a2id, a2v, most_common, metrics, counts, ivqa, top10=False
):
""" Similar as compute_agreeings, computes agreeings and counts for most common words """
if not ivqa:
for word, cword in most_common:
if word not in a2id:
counts[word] = cword
continue
predicted = topk[:, 0]
metrics[f"acc_{word}"] += (
(predicted[answers == a2id[word]] == a2id[word]).sum().item()
)
if top10:
predicted10 = topk[:, :10]
metrics[f"acc10_{word}"] += (
(predicted10[answers == a2id[word]] == a2id[word]).sum().item()
)
counts[word] += (answers == a2id[word]).sum().item()
else:
for word, cword in most_common:
if word not in a2id:
counts[word] = cword
continue
predicted = F.one_hot(topk[:, 0], num_classes=len(a2v))
ans_word = answers[:, a2id[word]]
metrics[f"acc_{word}"] += (
(predicted[:, a2id[word]][ans_word == 1] * ans_word[ans_word == 1])
.sum()
.item()
)
if top10:
predicted10 = F.one_hot(topk[:, :10], num_classes=len(a2v)).sum(1)
metrics[f"acc10_{word}"] += (
(
predicted10[:, a2id[word]][ans_word == 1]
* ans_word[ans_word == 1]
)
.sum()
.item()
)
counts[word] += (ans_word == 1).sum().item()
return metrics, counts
def compute_metrics(x):
sx = np.sort(-x, axis=1)
d = np.diag(-x)
d = d[:, np.newaxis]
ind = sx - d
ind = np.where(ind == 0)
ind = ind[1]
metrics = {}
metrics["R1"] = float(np.sum(ind == 0)) / len(ind)
metrics["R10"] = float(np.sum(ind < 10)) / len(ind)
metrics["R100"] = float(np.sum(ind < 100)) / len(ind)
metrics["MR"] = np.median(ind) + 1
return metrics
def print_computed_metrics(metrics):
r1 = metrics["R1"]
r10 = metrics["R10"]
r100 = metrics["R100"]
mr = metrics["MR"]
return "R@1: {:.4f} - R@10: {:.4f} - R@100: {:.4f} - Median R: {}".format(
r1, r10, r100, mr
)