-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
253 lines (210 loc) · 12 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os, sys, random
from collections import defaultdict
import warnings
warnings.filterwarnings("ignore")
sys.path.insert(0, "../partitura")
sys.path.insert(0, "../")
from tqdm import tqdm
import numpy as np
import hydra
from hydra.utils import to_absolute_path
import model as Model
import torch
torch.set_printoptions(sci_mode=False)
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from utils import *
from renderer import Renderer
def eval_renderer(cfg, val_loader):
"""run the evaluation set on other renderer for comparison
- Basis Mixer: render the passage
- ScorePerformer: save generated performances from their colab and match (since they use ASAP as well)
"""
sip_dict = defaultdict(bool) # keeping track of pieces so don't do repetitive computation.
for batch_idx, batch in tqdm(enumerate(val_loader)):
# iterrate our batch.
# for idx in tqdm(range(0, cfg.dataloader.val.batch_size, 2)):
for idx in tqdm(range(0, cfg.dataloader.val.batch_size)):
if idx != 15:
continue
snote_id_path = batch['snote_id_path'][idx]
if sip_dict[snote_id_path]:
continue
sip_dict[snote_id_path] = False
snote_ids = np.load(snote_id_path)
if len(snote_ids) < 10: # when there is too few notes, the rendering would have problems.
continue
piece_name = batch['piece_name'][idx]
mid_out_dir = f"{cfg.task.samples_root}/EVAL-{cfg.renderer}/batch={batch_idx}/"
os.makedirs(mid_out_dir, exist_ok=True)
# load multiple label performances to compare
snote_id_dir = snote_id_path.split("/")[-1][:-4]
lpps = glob.glob(f"artifacts/samples/GT/{snote_id_dir}/*.mid")
dexter_path = "/".join(cfg.pretrained_path.split("/")[:-1])
dexter_path = dexter_path.replace("checkpoint/", "samples/EVAL-")
save_seg, merge_tracks, save_source, save_label = False, False, False, False
if cfg.renderer == 'basismixer':
save_seg = True
pred_mid_path = f"artifacts/samples/EVAL-basismixer/{piece_name}.mid"
if os.path.exists(f"{mid_out_dir}/{idx}_{piece_name}.mid"): # don't compute the existing ones.
continue
if cfg.renderer == "virtuosonet":
# virtuosonet output are pre-computed from running their repository
save_seg = True
pred_mid_path = f"artifacts/samples/EVAL-virtuosonet/{piece_name}.mid"
if os.path.exists(f"{mid_out_dir}/{idx}_{piece_name}.mid"): # don't compute the existing ones.
continue
if cfg.renderer == "dexter-diffwave":
save_seg = True
# dexter was first rendered in testing step. But this step compare it with all GTs.
dexter_midiout_path = f"{dexter_path}/epoch=0/batch={batch_idx}/"
pred_mid_path = f"{dexter_midiout_path}/{idx}_{piece_name}.mid"
# if os.path.exists(f"{mid_out_dir}/{idx}_{piece_name}_feats_pred.csv"): # don't compute the existing ones.
# continue
# idx_ = (idx - 1) if idx % 2 else (idx + 1)
if cfg.renderer == "dexter1":
dexter_path_ = dexter_path.replace("False", 'True')
dexter_midiout_path = f"{dexter_path_}/epoch=0/batch={batch_idx}/"
pred_mid_path = f"{dexter_midiout_path}/{idx_}_{piece_name}.mid"
if cfg.renderer == "dexter34":
dexter_path_ = dexter_path.replace("False", 'True')
dexter_path_ = dexter_path_.replace("ssfrac1", 'ssfrac0.75')
dexter_midiout_path = f"{dexter_path_}/epoch=0/batch={batch_idx}/"
pred_mid_path = f"{dexter_midiout_path}/{idx}_{piece_name}.mid"
if cfg.renderer == "dexter12":
dexter_path_ = dexter_path.replace("False", 'True')
dexter_path_ = dexter_path_.replace("ssfrac1", 'ssfrac0.5')
dexter_midiout_path = f"{dexter_path_}/epoch=0/batch={batch_idx}/"
pred_mid_path = f"{dexter_midiout_path}/{idx}_{piece_name}.mid"
if cfg.renderer == "dexter14":
dexter_path_ = dexter_path.replace("False", 'True')
dexter_path_ = dexter_path_.replace("ssfrac1", 'ssfrac0.25')
dexter_midiout_path = f"{dexter_path_}/epoch=0/batch={batch_idx}/"
pred_mid_path = f"{dexter_midiout_path}/{idx}_{piece_name}.mid"
if cfg.renderer == "dexterw0.5":
dexter_path_ = dexter_path.replace("w=1.2", 'w=0.5')
dexter_midiout_path = f"{dexter_path_}/epoch=0/batch={batch_idx}/"
pred_mid_path = f"{dexter_midiout_path}/{idx_}_{piece_name}.mid"
if cfg.renderer == "dexterw2":
dexter_path_ = dexter_path.replace("w=1.2", 'w=2')
dexter_midiout_path = f"{dexter_path_}/epoch=0/batch={batch_idx}/"
pred_mid_path = f"{dexter_midiout_path}/{idx_}_{piece_name}.mid"
if cfg.renderer == "dexterw3":
dexter_path_ = dexter_path.replace("w=1.2", 'w=3')
dexter_midiout_path = f"{dexter_path_}/epoch=0/batch={batch_idx}/"
pred_mid_path = f"{dexter_midiout_path}/{idx_}_{piece_name}.mid"
pred_mid_path_basismixer = f"artifacts/samples/EVAL-basismixer/{piece_name}.mid"
if not os.path.exists(pred_mid_path_basismixer): # since basismixer contains the least testing data.
continue
for lpp in lpps:
if os.path.exists(pred_mid_path) and os.path.exists(lpp):
# try:
# generate evaluation file
renderer = Renderer(mid_out_dir, idx=idx)
renderer.load_external_performances(pred_mid_path, batch['score_path'][idx], snote_ids,
label_performance_path=lpp, piece_name=piece_name,
save_seg=save_seg, merge_tracks=merge_tracks,
external_align=(cfg.renderer=='virtuosonet' or cfg.renderer=='basismixer'))
renderer.save_performance_features()
renderer.save_pf_distribution()
# except Exception as e:
# print(e)
# compute the distribution in regards to the overall GT space.
# try:
renderer.save_pf_distribution(gt_space=f"artifacts/samples/GT/{snote_id_dir}")
# except Exception as e:
# print(e)
hook()
def save_all_gt(cfg, valid_set, indices_dict):
"""save all the segments of validation set ground truth. Grouped by piece seg. """
for sip, indices in tqdm(indices_dict.items()):
print(sip, indices)
if os.path.exists(f"{cfg.task.samples_root}/GT/{sip}"):
continue
if not os.path.exists(f"{cfg.task.samples_root}/GT/{sip}"):
os.makedirs(f"{cfg.task.samples_root}/GT/{sip}", exist_ok=True)
for idx in indices:
data = valid_set[idx]
try:
renderer = Renderer(f"{cfg.task.samples_root}/GT/{sip}",
data['p_codec'],
label_data=data,
idx=idx)
renderer.render_sample()
renderer.save_performance_features()
except Exception as e:
print(e)
continue
# get the mean and std of all versions of human performances. as well as concatenation
for typename in ['feats_pred', 'tv_feats']:
try:
csvs = glob.glob(f"{cfg.task.samples_root}/GT/{sip}/*_{typename}.csv")
tables = pd.concat([pd.read_csv(c) for c in csvs])
tables_group = tables.groupby(level=0)
tables_group.mean().to_csv(f"{cfg.task.samples_root}/GT/{sip}/{typename}_mean.csv", index=False)
tables_group.std().to_csv(f"{cfg.task.samples_root}/GT/{sip}/{typename}_std.csv", index=False)
tables.to_csv(f"{cfg.task.samples_root}/GT/{sip}/{typename}_all.csv", index=False)
except:
print(sip)
@hydra.main(config_path="config", config_name="evaluate")
def main(cfg):
os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python'
os.environ['HYDRA_FULL_ERROR'] = "1"
os.system("wandb sync --clean-force --clean-old-hours 3")
np.random.seed(cfg.random_seed)
torch.manual_seed(cfg.random_seed)
torch.cuda.manual_seed(cfg.random_seed)
cfg.data_root = to_absolute_path(cfg.data_root)
# load our data
# paired, _ = load_transfer_pair(K=2000000, N=cfg.seg_len)
# train_set, valid_set = split_train_valid(paired,
# select_num=3000,
# paired_input=True
# )
train_set = np.load(f"{BASE_DIR}/codec_N={cfg.seg_len}_mixup_train.npy", allow_pickle=True)
valid_set = np.load(f"{BASE_DIR}/codec_N={cfg.seg_len}_mixup_test_shuffled.npy", allow_pickle=True)
if cfg.test.transfer:
_, valid_set = split_train_valid(np.load(f"{BASE_DIR}/codec_N={cfg.seg_len}_mixup_paired_K=2000000.npy", allow_pickle=True), paired_input=True)
# indices_dict = group_same_seg(valid_set)
# save_all_gt(cfg, valid_set, indices_dict)
# hook()
assert(len(valid_set) % 2 == 0)
# Normalize data
train_set, valid_set, means, stds = dataset_normalization(train_set, valid_set)
cfg.task.dataset_means = means
cfg.task.dataset_stds = stds
train_loader = DataLoader(train_set[:cfg.dataloader.num_data], **cfg.dataloader.train)
val_loader = DataLoader(valid_set[:cfg.dataloader.num_data], **cfg.dataloader.val)
if cfg.renderer == "diff":
# Model
model = getattr(Model, cfg.model.name).load_from_checkpoint(
checkpoint_path=cfg.pretrained_path,\
**cfg.model.args,
**cfg.task)
lw = "".join(str(x) for x in cfg.task.loss_weight)
if cfg.model.name == 'DenoiserUnet':
name = f"target{cfg.train_target}-lw{lw}-len{cfg.seg_len}-beta{round(cfg.task.beta_end, 2)}-steps{cfg.task.timesteps}-{cfg.task.training.mode}-" + \
f"Transfer{cfg.task.transfer}-ssfrac{cfg.task.sample_steps_frac}-" + \
f"{cfg.task.sampling.type}-w={cfg.task.sampling.w}-" \
f"dim={cfg.model.args.dim}"
else:
name = f"target{cfg.train_target}-lw{lw}-len{cfg.seg_len}-beta{round(cfg.task.beta_end, 2)}-steps{cfg.task.timesteps}-{cfg.task.training.mode}-" + \
f"Transfer{cfg.task.transfer}-ssfrac{cfg.task.sample_steps_frac}-" + \
f"L{cfg.model.args.residual_layers}-C{cfg.model.args.residual_channels}-" + \
f"{cfg.task.sampling.type}-w={cfg.task.sampling.w}-" + \
f"p={cfg.model.args.cond_dropout}-k={cfg.model.args.kernel_size}-" + \
f"dia={cfg.model.args.dilation_base}-{cfg.model.args.dilation_bound}"
if cfg.condition_eval:
name = "EVALo-" + name
else:
name = "EVAL-" + name
wandb_logger = WandbLogger(project="DiffPerformer", name=name, save_code=True)
trainer = pl.Trainer(**cfg.trainer,
logger=wandb_logger,
)
trainer.test(model, train_loader)
else:
eval_renderer(cfg, val_loader)
if __name__ == "__main__":
main()