-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
61 lines (52 loc) · 1.95 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import torch.nn as nn
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding="same"),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding="same"),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
)
def forward(self, x):
return self.double_conv(x)
class CNNVO(nn.Module):
def __init__(self):
super(CNNVO, self).__init__()
self.doubleConv1 = DoubleConv(2, 32)
self.pool1 = nn.MaxPool2d(kernel_size=(2,2), stride=2)
self.doubleConv2 = DoubleConv(32, 64)
self.pool2 = nn.MaxPool2d(kernel_size=(2,2), stride=2)
self.doubleConv3 = DoubleConv(64, 128)
self.pool3 = nn.MaxPool2d(kernel_size=(2,2), stride=2)
self.doubleConv4 = DoubleConv(128, 256)
self.pool4 = nn.MaxPool2d(kernel_size=(2,2), stride=2)
self.doubleConv5 = DoubleConv(256, 512)
self.pool5 = nn.MaxPool2d(kernel_size=(2,2), stride=2)
self.doubleConv6 = DoubleConv(512, 512)
self.flatten = nn.Flatten(start_dim=1,end_dim=-1)
self.fc1 = nn.Linear(in_features=512*4*4 + 2, out_features=2)
def forward(self, x, h, delta):
x = self.doubleConv1(x)
x = self.pool1(x)
x = self.doubleConv2(x)
x = self.pool2(x)
x = self.doubleConv3(x)
x = self.pool3(x)
x = self.doubleConv4(x)
x = self.pool4(x)
x = self.doubleConv5(x)
x = self.pool5(x)
x = self.doubleConv6(x)
x = self.flatten(x)
x = torch.cat((x, h, delta), dim=1)
x = self.fc1(x)
return x
if __name__ == "__main__":
# build and load model
model = CNNVO()
print(model)