-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
170 lines (134 loc) · 6 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import numpy as np
import torch
import torch.optim as optim
from tqdm import tqdm
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter
import pickle
from dataloader import KDD22
from model import CNNVO
def val_model(model, val_loader, criterion):
epoch_loss = 0
with tqdm(val_loader, unit="batch") as tepoch:
for images, altitude, delta, odom in tepoch:
tepoch.set_description(f"Validating ")
if torch.cuda.is_available():
images, altitude, delta, odom = images.cuda(), altitude.cuda(), delta.cuda(), odom.cuda()
altitude = altitude.unsqueeze(1) # correct batch shape [bsize x 1]
delta = delta.unsqueeze(1)
# predict odom
estimated_odom = model(images.float(), altitude.float(), delta.float())
# compute loss
loss = criterion(estimated_odom, odom.float())
epoch_loss += loss.item()
tepoch.set_postfix(val_loss=loss.item())
return epoch_loss / len(val_loader)
def train_model(model, train_loader, criterion, optimizer, epoch, tensorboard_writer):
epoch_loss = 0
iter = (epoch - 1) * len(train_loader) + 1
with tqdm(train_loader, unit="batch") as tepoch:
for images, altitude, delta, odom in tepoch:
tepoch.set_description(f"Epoch {epoch}")
if torch.cuda.is_available():
images, altitude, delta, odom = images.cuda(), altitude.cuda(), delta.cuda(), odom.cuda()
altitude = altitude.unsqueeze(1) # correct batch shape [bsize x 1]
delta = delta.unsqueeze(1)
# predict odom
estimated_odom = model(images.float(), altitude.float(), delta.float())
# loss = criterion(estimated_odom, odom.float())
loss = torch.sqrt(criterion(estimated_odom, odom.float()))
# compute gradient and do optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_loss += loss.item()
tepoch.set_postfix(loss=loss.item())
# log tensorboard
tensorboard_writer.add_scalar('training_loss', loss.item(), iter)
iter += 1
return epoch_loss / len(train_loader)
def train(model, train_loader, val_loader, criterion, optimizer, tensorboard_writer, args):
best_val = args["best_val"]
checkpoint_path = args["checkpoint_path"]
epochs = args["epoch"]
for epoch in range(args["epoch_init"], epochs):
# training for one epoch
model.train()
train_loss = train_model(model, train_loader, criterion, optimizer, epoch, tensorboard_writer)
# validate model
model.eval()
with torch.no_grad():
val_loss = val_model(model, val_loader, criterion)
print(f"Epoch: {epoch} - loss: {train_loss:.4f} - val_loss: {val_loss:.4f} \n")
# save best mode
state = {
"epoch": epoch,
"state_dict": model.state_dict(),
"best_val": best_val,
}
if val_loss < best_val:
print(f"Saving new best model -- loss decreased from {best_val:.4f} to {val_loss:.4f} \n")
best_val = val_loss
state["best_val"] = best_val
torch.save(state, os.path.join(checkpoint_path, "checkpoint_best.pth"))
# save model
torch.save(state, os.path.join(checkpoint_path, "checkpoint_last.pth"))
# log loss in TensorBoard
tensorboard_writer.add_scalar("train_loss", train_loss, epoch)
tensorboard_writer.add_scalar("val_loss", val_loss, epoch)
return
if __name__ == "__main__":
# set hyperparameters and configuration
args = {
"data_dir": "dataset",
"bsize": 4, # batch size
"lr": 1e-3, # learning rate
"momentum": 0.9, # SGD momentum
"weight_decay": 0.0005, # SGD momentum
"epoch": 200, # train iters each timestep
"epsilon": 0.001, # linear decay of exploration policy
"checkpoint_path": "ckpt/exp1", # path to save checkpoint
"checkpoint": None, # checkpoint
}
# create ckpt_path and save args
if not os.path.exists(args["checkpoint_path"]):
os.makedirs(args["checkpoint_path"])
with open(args["checkpoint_path"] + '/args.pkl', 'wb') as f:
pickle.dump(args, f)
device = "cuda" if torch.cuda.is_available() else "cpu"
# tensorboard writer
TensorBoardWriter = SummaryWriter(log_dir=args["checkpoint_path"])
# preprocessing operation
preprocess = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((128, 128)),
transforms.ToTensor(),
])
# train and val dataloader
train_dataset = KDD22(args["data_dir"], split="train", transform=preprocess)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=args["bsize"],
shuffle=True,
)
val_dataset = KDD22(args["data_dir"], split="val", val_split=0.01, transform=preprocess)
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=1,
shuffle=False,
)
# build and load model
model = CNNVO()
args["epoch_init"] = 1
args["best_val"] = np.inf
if args["checkpoint"] is not None:
checkpoint = torch.load(os.path.join(args["checkpoint_path"], args["checkpoint"]), map_location=device)
args["epoch_init"] = checkpoint["epoch"] + 1
args["best_val"] = checkpoint["best_val"]
model.load_state_dict(checkpoint['state_dict'])
if torch.cuda.is_available():
model.cuda()
# define loss and optimizer
criterion = torch.nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=args["lr"])
# train network
train(model, train_loader, val_loader, criterion, optimizer, TensorBoardWriter, args)