-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlda_utilities.R
57 lines (50 loc) · 2.01 KB
/
lda_utilities.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
library(topicmodels)
library(textmineR)
train_lda <- function(x=c(), library_name, tdm){
numero_topic<-round(x[1]) #x[1] = number of topics k
iteration<-round(x[2]) #x[2] = number of gibbs iteration
pAlpha<-x[3] #x[3] = Alpha
pBeta<-x[4] #x[4] = Beta
if (library_name == "topicmodels"){
ldm <- topicmodels::LDA(tdm, method="Gibbs", control = list(alpha=pAlpha, delta=pBeta, iter=iteration, seed=r.seeds, nstart=n.starts), k = numero_topic) # k = num of topics
topicmodels::posterior(ldm)
lda_model = ldm
} else if (library_name == "textmineR"){
model <- textmineR::FitLdaModel(tdm, k=numero_topic, iteration=iteration, burnin=-1, calc_coherence = TRUE, alpha = pAlpha, beta = pBeta, smooth=FALSE)
lda_model = model
} else {
stop(paste("Lbrary not", library_name,"found!"), call. = TRUE)
}
return(lda_model)
}
document_by_topic_mixture <- function(lda_model, library_name){
if (library_name == "topicmodels"){
pldm <- topicmodels::posterior(lda_model)
names(tdm$dimnames)
docs<-tdm$dimnames$Docs
topics<-names(terms(lda_model))
matrix<-pldm$topics
dimnames(matrix)<-list(docs,topics)
mixture = matrix
} else if (library_name == "textmineR"){
document2topic <- textmineR::predict(lda_model, tdm, method = "gibbs", iterations=200)
mixture = document2topic
}
return(mixture)
}
get_top_words <- function(lda_model, library_name, n_words){
if (library_name == "topicmodels"){
top_words=topicmodels::terms(lda_model, n_words)
} else if (library_name == "textmineR"){
top_words=textmineR::GetTopTerms(lda_model$phi, n_words)
}
return(top_words)
}
evaluate_LDA <- function(x, library_name, tdm){
lda_model = train_lda(x, library_name, tdm)
document2topic = document_by_topic_mixture(lda_model, library_name)
distances <- as.matrix(dist(document2topic, method = "euclidean", diag = T, upper = T))
rownames(distances) = rownames(document2topic)
colnames(distances) = rownames(document2topic)
return(distances)
}