-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
131 lines (112 loc) · 4.87 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
import torch.optim as optim
from torch.autograd import Variable
from torch.utils import data
import argparse
import numpy as np
import torchvision.transforms as transforms
import os
import time
import glob
from statistics import mean
import random
import model
import torch.nn.functional as F
import matplotlib.pyplot as plt
import cv2
from scipy.io import loadmat
from PIL import Image
parser = argparse.ArgumentParser('Options for FAFAC model demo in PyTorch...')
parser.add_argument('--video', type=str, default=None, help='path to input video')
parser.add_argument('--snapshot', type=str, default=None, help='use a pre-trained model snapshot')
parser.add_argument('--version', type=str, default=None, help='which version of SqueezeNet to load (1_0/1_1)')
parser.add_argument('--num-classes', type=int, default=5, help="how many classes to train for")
parser.add_argument('--no-cuda', action='store_true', default=False, help='do not use cuda for training')
args = parser.parse_args()
# check args
if args.snapshot is None:
assert False, 'No model snapshot provided for inference!'
if args.video is None:
assert False, 'No video provided!'
# setup args
args.cuda = not args.no_cuda and torch.cuda.is_available()
prepare_input = transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor()])
normalize = transforms.Normalize((0.491399689874, 0.482158419622, 0.446530924224), (0.247032237587, 0.243485133253, 0.261587846975))
activity_classes = ['Away from pedals', 'Hovering over Acc', 'Hovering over Brake', 'On Accelerator', 'On Brake']
def mark_image(im):
im[:10, :, 0] = 0
im[:10, :, 1] = 255
im[:10, :, 2] = 0
im[-10:, :, 0] = 0
im[-10:, :, 1] = 255
im[-10:, :, 2] = 0
im[:, :10, 0] = 0
im[:, :10, 1] = 255
im[:, :10, 2] = 0
im[:, -10:, 0] = 0
im[:, -10:, 1] = 255
im[:, -10:, 2] = 0
return im
# inference function
def infer(net, im):
X = normalize(prepare_input(Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))))
X = X.unsqueeze(0)
if args.cuda:
X = X.cuda()
scores, masks = net(X)
mask_shape = (int(0.2*im.shape[1]), int(0.2*im.shape[1]))
away_from_pedals_mask = cv2.resize(masks[0, 0, :, :].view(13, 13).detach().cpu().numpy(), mask_shape)
hovering_over_acc_mask = cv2.resize(masks[0, 1, :, :].view(13, 13).detach().cpu().numpy(), mask_shape)
hovering_over_brk_mask = cv2.resize(masks[0, 2, :, :].view(13, 13).detach().cpu().numpy(), mask_shape)
on_acc_mask = cv2.resize(masks[0, 3, :, :].view(13, 13).detach().cpu().numpy(), mask_shape)
on_brk_mask = cv2.resize(masks[0, 4, :, :].view(13, 13).detach().cpu().numpy(), mask_shape)
class_1_mask = 255*away_from_pedals_mask
class_2_mask = 255*hovering_over_acc_mask
class_3_mask = 255*on_acc_mask
class_4_mask = 255*hovering_over_brk_mask
class_5_mask = 255*on_brk_mask
class_1_mask = cv2.applyColorMap(class_1_mask.astype(np.uint8), cv2.COLORMAP_JET)
class_2_mask = cv2.applyColorMap(class_2_mask.astype(np.uint8), cv2.COLORMAP_JET)
class_3_mask = cv2.applyColorMap(class_3_mask.astype(np.uint8), cv2.COLORMAP_JET)
class_4_mask = cv2.applyColorMap(class_4_mask.astype(np.uint8), cv2.COLORMAP_JET)
class_5_mask = cv2.applyColorMap(class_5_mask.astype(np.uint8), cv2.COLORMAP_JET)
scores = scores.view(-1, args.num_classes)
pred = scores.data.max(1)[1].item()
if pred == 0:
class_1_mask = mark_image(class_1_mask)
elif pred == 1:
class_2_mask = mark_image(class_2_mask)
elif pred == 3:
class_3_mask = mark_image(class_3_mask)
elif pred == 2:
class_4_mask = mark_image(class_4_mask)
elif pred == 4:
class_5_mask = mark_image(class_5_mask)
im_out = np.vstack((im, np.hstack((class_2_mask, class_3_mask, class_1_mask, class_4_mask, class_5_mask))))
im_out = im_out.astype(np.uint8)
cv2.putText(im_out, activity_classes[pred], (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 0), 5)
cv2.putText(im_out, activity_classes[pred], (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 2)
return im_out
if __name__ == '__main__':
net = model.squeezenet(args.version, args.snapshot)
if args.cuda:
net.cuda()
net.eval()
file_vidout = os.path.join(os.path.splitext(args.video)[0] + '_out.avi')
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out_vid_shape = (320, 302) # (640, 608)
out_vid = cv2.VideoWriter(file_vidout, fourcc, 30, out_vid_shape)
cap = cv2.VideoCapture(args.video)
frame_count_total = cap.get(cv2.CAP_PROP_FRAME_COUNT)
frame_count = 0
while True:
captured, im = cap.read()
if captured == False:
break
im_out = infer(net, im)
im_out = cv2.resize(im_out, out_vid_shape)
out_vid.write(im_out)
print('Frame %d/%d....' % (frame_count, frame_count_total))
frame_count += 1
cap.release()
out_vid.release()