-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_SR.py
90 lines (77 loc) · 4.13 KB
/
train_SR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from torch.utils.data import DataLoader
from lib.data.datasets import *
from lib.core import *
import lib.utils.optimizer as opt
from lib.utils.environment import init_env
from core.config import cfg
import lib.engine.detection.utils as utils
import lib.engine.detection.transforms as T
from lib.engine.detection.engine import train_one_epoch, evaluate
def get_transform(train=True):
transforms = []
if train:
transforms = [T.RandomHorizontalFlip(),
# T.RandomZoomOut(side_range=(1., 1.5)),
# T.RandomIoUCrop()
]
transforms.append(T.ToTensor())
return T.Compose(transforms)
if __name__ == '__main__':
device, writer = init_env(cfg, has_writer=True)
# get the model
model = eval("{}".format(cfg.MODEL.NAME))(cfg.MODEL.PARAM)
# move model to the right device
model.to(device)
DATASET_PATH = cfg.DATASET.PATH
aug_flag = (cfg.LOGGING.COMMENT != 'no augment')
train_ds = eval(cfg.DATASET.NAME)(DATASET_PATH, train='train', transforms=get_transform(aug_flag))
val_ds = eval(cfg.DATASET.NAME)(DATASET_PATH, train='valid', transforms=get_transform(False))
test_ds = eval(cfg.DATASET.NAME)(DATASET_PATH, train='test', transforms=get_transform(False))
NUM_WORKERS = cfg.SYSTEM.NUM_WORKERS
train_dl = torch.utils.data.DataLoader(
train_ds, batch_size=cfg.TRAIN.BATCH_SIZE, shuffle=True, num_workers=NUM_WORKERS, drop_last=True,
collate_fn=utils.collate_fn)
val_dl = torch.utils.data.DataLoader(
val_ds, batch_size=1, shuffle=False, num_workers=NUM_WORKERS,
collate_fn=utils.collate_fn)
test_dl = torch.utils.data.DataLoader(
test_ds, batch_size=1, shuffle=False, num_workers=NUM_WORKERS,
collate_fn=utils.collate_fn)
print("number of train samples :{}, Number of validation samples:{}"
.format(len(train_ds), len(val_ds)))
print("number of train batch :{}, Number of validation batch:{}"
.format(len(train_dl), len(val_dl)))
# construct an optimizer
params = [p for p in model.parameters() if p.requires_grad]
optimizer_ft = opt.get_optimizer(params, cfg.TRAIN.PARAM.OPTIMIZER, cfg.TRAIN.PARAM.OPTIMIZER_PARAM)
# and a learning rate scheduler which decreases the learning rate by
# 10x every 3 epochs
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_ft,
step_size=3, gamma=0.1)
num_epochs = cfg.TRAIN.EPOCHS
best = 0
for epoch in range(num_epochs):
# train for one epoch, printing every 10 iterations
train_one_epoch(model, optimizer_ft, train_dl, device, epoch, print_freq=10)
# update the learning rate
lr_scheduler.step()
# evaluate on the test dataset
val_eval = evaluate(model, val_dl, device=device, ann_path=val_ds.ann_path).coco_eval['bbox'].stats
test_eval = evaluate(model, test_dl, device=device, ann_path=test_ds.ann_path).coco_eval['bbox'].stats
if cfg.LOGGING.BEST:
if val_eval[0] > best:
best = val_eval[0]
torch.save(model.state_dict(), os.path.join(cfg.LOGGING.WEIGHT_FOLDER,
'best.ckp'))
torch.save(model.state_dict(), os.path.join(cfg.LOGGING.WEIGHT_FOLDER,
'last.ckp'))
else:
torch.save(model.state_dict(), os.path.join(cfg.LOGGING.WEIGHT_FOLDER,
'epoch_{}.ckp'.format(epoch)))
writer.add_scalar('val/mAP@0.5:0.95', val_eval[0], epoch, description=cfg.LOGGING.COMMENT)
writer.add_scalar('val/mAP@0.5', val_eval[1], epoch, description=cfg.LOGGING.COMMENT)
writer.add_scalar('val/mAP@0.75', val_eval[2], epoch, description=cfg.LOGGING.COMMENT)
writer.add_scalar('test/mAP@0.5:0.95', test_eval[0], epoch, description=cfg.LOGGING.COMMENT)
writer.add_scalar('test/mAP@0.5', test_eval[1], epoch, description=cfg.LOGGING.COMMENT)
writer.add_scalar('test/mAP@0.75', test_eval[2], epoch, description=cfg.LOGGING.COMMENT)
writer.flush()