-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver.py
96 lines (88 loc) · 4.93 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import numpy as np
import cv2
from scipy import sparse
from f_create_mask import create_mask
from f_load_data import *
from f_mr import mr
import json
class mr_solver:
"""Solver for training and testing MR."""
def __init__(self,args):
self.size = args.image_size
self.image_size = self.size * self.size
self.size_n = self.image_size+1
self.n = args.total_images
self.r = args.receptive_field
self.ch = args.input_ch
self.lamda = args.lamda
self.weight_dir = args.weights_dir
self.train_dataset_dir = args.train_dataset_dir
self.test_dataset_dir = args.test_dataset_dir
self.inthewild_dataset_dir = args.inthewild_dataset_dir
self.names = []
self.imagesA = np.zeros((self.n,self.image_size*self.ch))
self.imagesB = np.zeros((self.n,self.image_size*self.ch))
def train(self, args):
path = str(self.weight_dir)+'arguments_history.txt'
with open(path, 'w') as f:
json.dump(args.__dict__, f, indent=2)
print("loading input and target images...")
imagesA, imagesB = load_data(self, args)
print("construct a mask with "+str(self.r)+"x"+str(self.r)+" receptive field.....")
mask, M = create_mask(args)
if self.ch == 3:
print("*"*40)
print("learn MR weights for each channel seperately..")
print("*"*40)
for ch in range(self.ch):
print("form design and repsonse matrices.... ")
M1, M2 = create_design_response_matrices(self, M, ch, imagesA, imagesB)
print("learn MR weights....")
W = mr(self, M, M1, M2)
sparse.save_npz(str(args.weights_dir)+'mr_weights_dec-10-2019_'+str(ch+1)+'.npz', W)
print("saved weight matrix "+str(ch+1)+"...")
print("*"*40)
print("Done")
def test(self, args):
if args.mode == 'test':
print("loading input and target images...")
imagesA, imagesB = load_data(self, args)
for p in range(self.n):
tn = xn = np.zeros((self.size,self.size,self.ch))
ynt = np.zeros((self.size,self.size,self.ch))
for ch in range(self.ch):
x, t = load_x_t(self, p,ch, imagesA,imagesB)
Wt = sparse.load_npz(str(args.weights_dir)+'mr_weights_dec-10-2019_'+str(ch+1)+'.npz')
Wt = Wt.todense()
if len(x) != 0:
yn = np.dot(Wt,x)
xnt = x[0:self.image_size]
xn[:,:,ch] = np.reshape(xnt,(self.size,self.size))
ynt[:,:,ch] = np.reshape(yn,(self.size,self.size))
tn[:,:,ch] = np.reshape(t,(self.size,self.size))
ynt = cv2.normalize(ynt, None, 0,255, cv2.NORM_MINMAX, cv2.CV_8UC1)
xn = cv2.normalize(xn, None, 0,255, cv2.NORM_MINMAX, cv2.CV_8UC1)
tn = cv2.normalize(tn, None, 0,255, cv2.NORM_MINMAX, cv2.CV_8UC1)
ftest = np.concatenate((xn,ynt,tn), axis=1)
cv2.imwrite(str(args.test_results_dir)+str(self.names[p])+'_'+str(args.mode)+'.png',ftest)
print('Saved input, output and target images into {}'.format(args.test_results_dir))
else:
print("loading in the wild images...")
load_data(self, args)
for p in range(self.n):
xn = np.zeros((self.size,self.size,self.ch))
ynt = np.zeros((self.size,self.size,self.ch))
for ch in range(self.ch):
x = load_x(self, p,ch)
Wt = sparse.load_npz(str(args.weights_dir)+'mr_weights_dec-10-2019_'+str(ch+1)+'.npz')
Wt = Wt.todense()
if len(x) != 0:
yn = np.dot(Wt,x)
xnt = x[0:self.image_size]
xn[:,:,ch] = np.reshape(xnt,(self.size,self.size))
ynt[:,:,ch] = np.reshape(yn,(self.size,self.size))
ynt = cv2.normalize(ynt, None, 0,255, cv2.NORM_MINMAX, cv2.CV_8UC1)
xn = cv2.normalize(xn, None, 0,255, cv2.NORM_MINMAX, cv2.CV_8UC1)
ftest = np.concatenate((xn,ynt), axis=1)
cv2.imwrite(str(args.inthewild_results_dir)+str(self.names[p])+'_'+str(args.mode)+'.png',ynt)
print('Saved input and output images into {}'.format(args.inthewild_results_dir))