forked from jiyanggao/TALL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathctrl_model.py
174 lines (143 loc) · 8.34 KB
/
ctrl_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import dtypes
from util.cnn import fc_layer as fc
import vs_multilayer
from dataset import TestingDataSet
from dataset import TrainingDataSet
class CTRL_Model(object):
def __init__(self, batch_size, train_csv_path, test_csv_path, test_visual_feature_dir, train_visual_feature_dir):
self.batch_size = batch_size
self.test_batch_size = 1
self.vs_lr = 0.005
self.lambda_regression = 0.01
self.alpha = 1.0/batch_size
self.semantic_size = 1024 # the size of visual and semantic comparison size
self.sentence_embedding_size = 4800
self.visual_feature_dim = 4096*3
self.train_set=TrainingDataSet(train_visual_feature_dir, train_csv_path, self.batch_size)
self.test_set=TestingDataSet(test_visual_feature_dir, test_csv_path, self.test_batch_size)
'''
used in training alignment model, CTRL(aln)
'''
def fill_feed_dict_train(self):
image_batch,sentence_batch,offset_batch = self.train_set.next_batch()
input_feed = {
self.visual_featmap_ph_train: image_batch,
self.sentence_ph_train: sentence_batch,
self.offset_ph: offset_batch
}
return input_feed
'''
used in training alignment+regression model, CTRL(reg)
'''
def fill_feed_dict_train_reg(self):
image_batch, sentence_batch, offset_batch = self.train_set.next_batch_iou()
input_feed = {
self.visual_featmap_ph_train: image_batch,
self.sentence_ph_train: sentence_batch,
self.offset_ph: offset_batch
}
return input_feed
'''
cross modal processing module
'''
def cross_modal_comb(self, visual_feat, sentence_embed, batch_size):
vv_feature = tf.reshape(tf.tile(visual_feat, [batch_size, 1]),
[batch_size, batch_size, self.semantic_size])
ss_feature = tf.reshape(tf.tile(sentence_embed,[1, batch_size]),[batch_size, batch_size, self.semantic_size])
concat_feature = tf.reshape(tf.concat(2,[vv_feature, ss_feature]),[batch_size, batch_size, self.semantic_size+self.semantic_size])
print concat_feature.get_shape().as_list()
mul_feature = tf.mul(vv_feature, ss_feature)
add_feature = tf.add(vv_feature, ss_feature)
comb_feature = tf.reshape(tf.concat(2, [mul_feature, add_feature, concat_feature]),[1, batch_size, batch_size, self.semantic_size*4])
return comb_feature
'''
visual semantic inference, including visual semantic alignment and clip location regression
'''
def visual_semantic_infer(self, visual_feature_train, sentence_embed_train, visual_feature_test, sentence_embed_test):
name="CTRL_Model"
with tf.variable_scope(name):
print "Building training network...............................\n"
transformed_clip_train = fc('v2s_lt', visual_feature_train, output_dim=self.semantic_size)
transformed_clip_train_norm = tf.nn.l2_normalize(transformed_clip_train, dim=1)
transformed_sentence_train = fc('s2s_lt', sentence_embed_train, output_dim=self.semantic_size)
transformed_sentence_train_norm = tf.nn.l2_normalize(transformed_sentence_train, dim=1)
cross_modal_vec_train = self.cross_modal_comb(transformed_clip_train_norm, transformed_sentence_train_norm, self.batch_size)
sim_score_mat_train = vs_multilayer.vs_multilayer(cross_modal_vec_train, "vs_multilayer_lt", middle_layer_dim=1000)
sim_score_mat_train = tf.reshape(sim_score_mat_train,[self.batch_size, self.batch_size, 3])
tf.get_variable_scope().reuse_variables()
print "Building test network...............................\n"
transformed_clip_test = fc('v2s_lt', visual_feature_test, output_dim=self.semantic_size)
transformed_clip_test_norm = tf.nn.l2_normalize(transformed_clip_test, dim=1)
transformed_sentence_test = fc('s2s_lt', sentence_embed_test, output_dim=self.semantic_size)
transformed_sentence_test_norm = tf.nn.l2_normalize(transformed_sentence_test, dim=1)
cross_modal_vec_test = self.cross_modal_comb(transformed_clip_test_norm, transformed_sentence_test_norm, self.test_batch_size)
sim_score_mat_test = vs_multilayer.vs_multilayer(cross_modal_vec_test, "vs_multilayer_lt", reuse=True, middle_layer_dim=1000)
sim_score_mat_test = tf.reshape(sim_score_mat_test, [3])
return sim_score_mat_train, sim_score_mat_test
'''
compute alignment and regression loss
'''
def compute_loss_reg(self, sim_reg_mat, offset_label):
sim_score_mat, p_reg_mat, l_reg_mat = tf.split(2, 3, sim_reg_mat)
sim_score_mat = tf.reshape(sim_score_mat, [self.batch_size, self.batch_size])
l_reg_mat = tf.reshape(l_reg_mat, [self.batch_size, self.batch_size])
p_reg_mat = tf.reshape(p_reg_mat, [self.batch_size, self.batch_size])
# unit matrix with -2
I_2 = tf.diag(tf.constant(-2.0, shape=[self.batch_size]))
all1 = tf.constant(1.0, shape=[self.batch_size, self.batch_size])
# | -1 1 1... |
# mask_mat = | 1 -1 -1... |
# | 1 1 -1 ... |
mask_mat = tf.add(I_2, all1)
# loss cls, not considering iou
I = tf.diag(tf.constant(1.0, shape=[self.batch_size]))
I_half = tf.diag(tf.constant(0.5, shape=[self.batch_size]))
batch_para_mat = tf.constant(self.alpha, shape=[self.batch_size, self.batch_size])
para_mat = tf.add(I,batch_para_mat)
loss_mat = tf.log(tf.add(all1, tf.exp(tf.mul(mask_mat, sim_score_mat))))
loss_mat = tf.mul(loss_mat, para_mat)
loss_align = tf.reduce_mean(loss_mat)
# regression loss
l_reg_diag = tf.matmul(tf.mul(l_reg_mat, I), tf.constant(1.0, shape=[self.batch_size, 1]))
p_reg_diag = tf.matmul(tf.mul(p_reg_mat, I), tf.constant(1.0, shape=[self.batch_size, 1]))
offset_pred = tf.concat(1, (p_reg_diag, l_reg_diag))
loss_reg = tf.reduce_mean(tf.abs(tf.sub(offset_pred, offset_label)))
loss=tf.add(tf.mul(self.lambda_regression, loss_reg), loss_align)
return loss, offset_pred, loss_reg
def init_placeholder(self):
visual_featmap_ph_train = tf.placeholder(tf.float32, shape=(self.batch_size, self.visual_feature_dim))
sentence_ph_train = tf.placeholder(tf.float32, shape=(self.batch_size, self.sentence_embedding_size))
offset_ph = tf.placeholder(tf.float32, shape=(self.batch_size,2))
visual_featmap_ph_test = tf.placeholder(tf.float32, shape=(self.test_batch_size, self.visual_feature_dim))
sentence_ph_test = tf.placeholder(tf.float32, shape=(self.test_batch_size, self.sentence_embedding_size))
return visual_featmap_ph_train,sentence_ph_train,offset_ph,visual_featmap_ph_test,sentence_ph_test
def get_variables_by_name(self,name_list):
v_list = tf.trainable_variables()
v_dict = {}
for name in name_list:
v_dict[name] = []
for v in v_list:
for name in name_list:
if name in v.name: v_dict[name].append(v)
for name in name_list:
print "Variables of <"+name+">"
for v in v_dict[name]:
print " "+v.name
return v_dict
def training(self, loss):
v_dict = self.get_variables_by_name(["lt"])
vs_optimizer = tf.train.AdamOptimizer(self.vs_lr, name='vs_adam')
vs_train_op = vs_optimizer.minimize(loss, var_list=v_dict["lt"])
return vs_train_op
def construct_model(self):
# initialize the placeholder
self.visual_featmap_ph_train, self.sentence_ph_train, self.offset_ph, self.visual_featmap_ph_test, self.sentence_ph_test=self.init_placeholder()
# build inference network
sim_reg_mat, sim_reg_mat_test = self.visual_semantic_infer(self.visual_featmap_ph_train, self.sentence_ph_train, self.visual_featmap_ph_test, self.sentence_ph_test)
# compute loss
self.loss_align_reg, offset_pred, loss_reg = self.compute_loss_reg(sim_reg_mat, self.offset_ph)
# optimize
self.vs_train_op = self.training(self.loss_align_reg)
return self.loss_align_reg, self.vs_train_op, sim_reg_mat_test, offset_pred, loss_reg