-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpostprocessing_functions.py
564 lines (430 loc) · 23.5 KB
/
postprocessing_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import pandas as pd
import helper_functions as helper
import datetime, os, subprocess
import numpy as np
from osgeo import ogr
import matplotlib.pyplot as plt
from tqdm import tqdm
import rasterio
from scipy.stats import circmean, circstd
from skimage import exposure
import cv2 as cv
import platform
from pyproj import CRS
import json
def calc_velocity(fn, dt, fixed_res = None, medShift = False):
"""
Calculate velocity and direction of displacement between two images.
´
Args:
fn (str): Path to the input raster file.
dt (timedelta): Temporal baseline between the two images.
fixed_res (float, optional): Fixed raster resolution (default: None, read from metadata).
med_shift (bool, optional): Apply median shift to displacements (default: False).
Returns:
v (numpy.ndarray): Velocity in meters per year.
direction (numpy.ndarray): Direction of displacement in degrees with respect to north.
"""
#NOTE: if the temporal baseline is short, the background noise of typically +-1-2 pixels will result in abnormally high velocities
#therefore, only use these pairs if the landslide is fast moving
# load autoRIFT output
with rasterio.open(fn) as src:
# get raster resolution from metadata
meta = src.meta
if fixed_res is None:
res = meta["transform"][0]
else:
res = fixed_res
#print(res)
# first band is offset in x direction, second band in y
dx = src.read(1)
dy = src.read(2)
if meta["count"] == 3:
# print("Interpreting the third band as good pixel mask.")
valid = src.read(3)
dx[valid == 0] = np.nan
dy[valid == 0] = np.nan
if dt.days < 0: #invert velocity if negative time difference (ref younger than sec)
dx = dx*-1
dy = dy*-1
if medShift:
dx = dx - np.nanmedian(dx)
dy = dy - np.nanmedian(dy)
#calculate total offset (length of vector)
v = np.sqrt((dx**2+dy**2))
#convert to meter
v = v * res
#convert to meter/year (year)
v = (v/abs(dt.days))*365
#calculate angle to north
north = np.array([0,1])
#stack x and y offset to have a 3d array with vectors along axis 2
vector_2 = np.dstack((dx,dy))
unit_vector_1 = north / np.linalg.norm(north)
unit_vector_2 = vector_2 / np.linalg.norm(vector_2, axis = 2, keepdims = True)
#there np.tensordot is needed (instead of np.dot) because of the multiple dimensions of the input arrays
dot_product = np.tensordot(unit_vector_1,unit_vector_2, axes=([0],[2]))
direction = np.rad2deg(np.arccos(dot_product))
#as always the smallest angle to north is given, values need to be substracted from 360 if x is negative
subtract = np.zeros(dx.shape)
subtract[dx<0] = 360
direction = abs(subtract-direction)
return v, direction
def calc_velocity_wrapper(matches, prefix_ext = "", overwrite = False, medShift = True):
"""
Calculate velocity and direction of displacement for multiple image pairs.
Args:
matches (str or pandas.DataFrame): Path to the matchfile or a pandas DataFrame with match information.
prefix_ext (str, optional): Prefix extension for the output files (default: "").
overwrite (bool, optional): Overwrite existing velocity files (default: False).
med_shift (bool, optional): Apply median shift to displacements (default: True).
Returns:
out (list): List of paths to the calculated velocity files.
"""
if type(matches) == str:
try:
df = pd.read_csv(matches)
path,_ = os.path.split(matches)
except FileNotFoundError:
print("Could not find the provided matchfile.")
return
elif type(matches) == pd.core.frame.DataFrame:
df = matches.copy()
path,_ = os.path.split(df.ref.iloc[0])
else:
print("Matches must be either a string indicating the path to a matchfile or a pandas DataFrame.")
return
df["id_ref"] = df.ref.apply(helper.get_scene_id)
df["id_sec"] = df.sec.apply(helper.get_scene_id)
df["date_ref"] = df.id_ref.apply(helper.get_date)
df["date_sec"] = df.id_sec.apply(helper.get_date)
df["dt"] = df.date_sec - df.date_ref
out = []
for index, row in tqdm(df.iterrows(), total=df.shape[0]):
disp = os.path.join(path, "disparity_maps", f"{row.id_ref}_{row.id_sec}{prefix_ext}-F.tif")
if os.path.isfile(disp):
if overwrite or (not os.path.isfile(disp[:-4]+"_velocity.tif")):
v, direction = calc_velocity(disp, row["dt"], medShift=medShift)
helper.save_file([v,direction], disp, outname = disp[:-4]+"_velocity.tif")
out.append(disp[:-4]+"_velocity.tif")
else:
print(f"Warning: Disparity file {disp} not found. Skipping velocity calculation...")
return out
def offset_stats_pixel(r, xcoord, ycoord, pad = 0, resolution = None, dt = None, take_velocity = True):
r[r==-9999] = np.nan
if not take_velocity:
if dt is None or resolution is None:
print("Need to provide a time difference and raster resolution when getting stats for dx/dy.")
return
#calculating displacement in m/yr to make things comparable
r = ((r*resolution)/dt)*365
sample = r[ycoord-pad:ycoord+pad+1, xcoord-pad:xcoord+pad+1]
mean = np.nanmean(sample)
median = np.nanmedian(sample)
p75 = np.nanpercentile(sample, 75)
p25 = np.nanpercentile(sample, 25)
std = np.nanstd(sample)
return mean, std, median, p25, p75
def offset_stats_aoi(r, mask, resolution, dt = None, take_velocity = True):
r[r==-9999] = np.nan
if not take_velocity:
if dt is None or resolution is None:
print("Need to provide a time difference and raster resolution when getting stats for dx/dy.")
return
#calculating displacement in m/yr to make things comparable
r = ((r*resolution)/dt)*365
try:
sample = r[mask == 1]
except IndexError:
print("There seems to be a problem with your input scene. Likely the dimensions do not fit the rest of the data. Have you altered your x/ysize or coordinates of the upper left corner when correlating scenes?")
return np.nan, np.nan, np.nan, np.nan
mean = np.nanmean(sample)
median = np.nanmedian(sample)
p75 = np.nanpercentile(sample, 75)
p25 = np.nanpercentile(sample, 25)
std = np.nanstd(sample)
return mean, std, median, p25, p75
def get_stats_in_aoi(matches, aoi = None, xcoord = None, ycoord = None, pad = 0, prefix_ext = "", max_dt = None, take_velocity = True, invert = False):
"""
Calculate statistics within an Area of Interest (AOI) or at specific pixel coordinates for all disparity maps generated from the provided matches.
Args:
matches (str or DataFrame): Path to the matchfile or pandas DataFrame.
aoi (str, optional): Path to the GeoJSON file defining the Area of Interest. Defaults to None.
xcoord (int, optional): X-coordinate of the pixel for analysis. Used if aoi is not provided. Defaults to None.
ycoord (int, optional): Y-coordinate of the pixel for analysis. Used if aoi is not provided. Defaults to None.
pad (int, optional): Number of pixels to pad around the selected pixel for analysis. Used if xcoord and ycoord are provided. Defaults to 0.
prefix_ext (str, optional): Additional prefix extension for disparity filenames. Defaults to "".
max_dt (int, optional): Maximum time difference (in days) between reference and secondary images. Defaults to None.
take_velocity (bool, optional): If True, calculate velocity statistics. If False, calculate dx/dy statistics. Defaults to True.
invert (bool, optional): If True, invert the AOI mask for statistics calculation. Defaults to False.
Returns:
DataFrame: Pandas DataFrame containing calculated statistics for each pair of images.
"""
assert aoi is not None or (xcoord is not None and ycoord is not None), "Please provide either an AOI (vector dataset) or x and y coordinates!"
if aoi is not None:
print("Calculating velocity inside AOI...")
else:
print(f"Calculating at pixel value {xcoord} {ycoord} with a padding of {pad} pixels...")
if type(matches) == str:
try:
df = pd.read_csv(matches)
path, matchfn = os.path.split(matches)
except FileNotFoundError:
print("Could not find the provided matchfile.")
return
elif type(matches) == pd.core.frame.DataFrame:
df = matches.copy()
path,_ = os.path.split(df.ref.iloc[0])
matchfn = "matches.csv"
else:
print("Matches must be either a string indicating the path to a matchfile or a pandas DataFrame.")
return
temp = "./temp.tif"
system = platform.system()
if system == "Windows":
temp = ".\\temp.tif"
if os.path.isfile(temp):
os.remove(temp)
df["id_ref"] = df.ref.apply(helper.get_scene_id)
df["id_sec"] = df.sec.apply(helper.get_scene_id)
df["date_ref"] = df.id_ref.apply(helper.get_date)
df["date_sec"] = df.id_sec.apply(helper.get_date)
df["path"] = df["ref"].apply(lambda x: os.path.split(x)[0])
df["dt"] = df.date_sec - df.date_ref
#introduce upper timelimit
if max_dt is not None:
df = df[df.dt <= datetime.timedelta(days=max_dt)].reset_index(drop = True)
#extract statistics from disparity files
if take_velocity:
print("Using velocity to generate timeline...")
ext = "_velocity"
colnames = ["vel_mean", "vel_std", "vel_median", "vel_p25", "vel_p75"]
stats = np.zeros([len(df), 5])
else:
print("Using disparity maps to generate timeline...")
ext = ""
colnames = ["dx_mean", "dx_std", "dx_median", "dx_p25", "dx_p75", "dy_mean", "dy_std", "dy_median", "dy_p25", "dy_p75"]
stats = np.zeros([len(df), 10])
stats[:] = np.nan
for index, row in tqdm(df.iterrows(), total=df.shape[0]):
disp = os.path.join(row.path, "disparity_maps", f"{row.id_ref}_{row.id_sec}{prefix_ext}-F{ext}.tif")
if os.path.isfile(disp):
extent = helper.get_extent(disp)
resolution = helper.read_transform(disp)[0]
if aoi is not None: #stats in geojson
if not os.path.isfile(temp):
#check aoi crs
with open(aoi, 'r') as f:
geojson = json.load(f)
crs_info = geojson.get('crs', {}).get('properties', {}).get('name', None)
crs = CRS.from_string(crs_info)
epsg_aoi = crs.to_epsg()
#get epsg of disparity raster. assumes that all disp maps will have the same epsg
epsg_disp = helper.get_epsg(disp)
if int(epsg_disp) != int(epsg_aoi):
print("Reprojecting input GeoJSON to match EPSG of disparity maps...")
cmd = f"ogr2ogr -f 'GeoJSON' {aoi[:-8]}_EPSG{epsg_disp}.geojson {aoi} -s_srs EPSG:{epsg_aoi} -t_srs EPSG:{epsg_disp} "
result = subprocess.run(cmd, shell = True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text = True)
if result.stderr != "":
print(result.stderr)
aoi = f"{aoi[:-8]}_EPSG{epsg_disp}.geojson"
#only calculating the mask once - all images should have the same extent
#rasterize aoi to find the pixels inside´
if invert:
cmd = f"gdal_rasterize -tr {resolution} {resolution} -i -burn 1 -a_nodata 0 -ot Int16 -of GTiff -te {' '.join(map(str,extent))} {aoi} {temp}"
else:
cmd = f"gdal_rasterize -tr {resolution} {resolution} -burn 1 -a_nodata 0 -ot Int16 -of GTiff -te {' '.join(map(str,extent))} {aoi} {temp}"
subprocess.run(cmd, shell = True)
mask = helper.read_file(temp)
if take_velocity:
stats[index,0], stats[index,1], stats[index,2], stats[index,3], stats[index,4] = offset_stats_aoi(helper.read_file(disp, 1), mask, resolution = resolution, dt = row["dt"].days, take_velocity = take_velocity)
else:
bands = helper.read_meta(disp)["count"]
dx = helper.read_file(disp, 1)
dy = helper.read_file(disp, 2)
if bands == 3: #if polyfit has not yet been applied, mask
good = helper.read_file(disp, 3)
dx[good == 0] = np.nan
dy[good == 0] = np.nan
stats[index,0], stats[index,1], stats[index,2], stats[index,3], stats[index,4] = offset_stats_aoi(dx, mask, resolution = resolution, dt = row["dt"].days, take_velocity = take_velocity)
stats[index,5], stats[index,6], stats[index,7], stats[index,8], stats[index,9] = offset_stats_aoi(dy, mask, resolution = resolution, dt = row["dt"].days, take_velocity = take_velocity)
else: #stats in sample region
if take_velocity:
stats[index,0], stats[index,1], stats[index,2], stats[index,3], stats[index,4] = offset_stats_pixel(helper.read_file(disp, 1), xcoord, ycoord, pad, resolution = resolution, dt = row["dt"].days, take_velocity = take_velocity)
else:
bands = helper.read_meta(disp)["count"]
dx = helper.read_file(disp, 1)
dy = helper.read_file(disp, 2)
if bands == 3: #if polyfit has not yet been applied, mask
good = helper.read_file(disp, 3)
dx[good == 0] = np.nan
dy[good == 0] = np.nan
stats[index,0], stats[index,1], stats[index,2], stats[index,3], stats[index,4] = offset_stats_pixel(dx, xcoord, ycoord, pad, resolution = resolution, dt = row["dt"].days, take_velocity = take_velocity)
stats[index,5], stats[index,6], stats[index,7], stats[index,8], stats[index,9] = offset_stats_pixel(dy, xcoord, ycoord, pad, resolution = resolution, dt = row["dt"].days, take_velocity = take_velocity)
else:
print(f"Warning! Disparity file {disp} not found.")
statsdf = pd.DataFrame(stats, columns = colnames)
df = pd.concat([df, statsdf], axis = 1)
if aoi is not None:
_, aoi_name = os.path.split(aoi)
aoi_name = aoi_name.split(".")[0]
else:
aoi_name = f"x{xcoord}_y{ycoord}"
df.to_csv(f"{path}/stats_in_aoi_{matchfn[:-4]}{ext}_{aoi_name}.csv", index = False)
print(f"I have written {path}/stats_in_aoi_{matchfn[:-4]}{ext}_{aoi_name}.csv")
return df
def stack_rasters(matches, prefix_ext = "", what = "velocity", medShift = False):
"""
Stack velocity or disparity rasters from all correlation pairs.
Args:
matches (str or pandas.DataFrame): Path to the matchfile or a pandas DataFrame with match information.
prefix_ext (str, optional): Prefix extension for the output files (default: "").
what (str, optional): Type of rasters to stack [dx/dy/velocity/direction] (default: "velocity").
med_shift (bool, optional): Apply median shift to displacements (default: False).
Returns:
path to averaged raster
"""
#TODO: make this more laptop friendly
if type(matches) == str:
try:
df = pd.read_csv(matches)
path,fn = os.path.split(matches)
except FileNotFoundError:
print("Could not find the provided matchfile.")
return
elif type(matches) == pd.core.frame.DataFrame:
df = matches.copy()
path,_ = os.path.split(df.ref.iloc[0])
fn = "matches.csv"
else:
print("Matches must be either a string indicating the path to a matchfile or a pandas DataFrame.")
return
df["id_ref"] = df.ref.apply(helper.get_scene_id)
df["id_sec"] = df.sec.apply(helper.get_scene_id)
df["date_ref"] = df.id_ref.apply(helper.get_date)
df["date_sec"] = df.id_sec.apply(helper.get_date)
df["dt"] = df.date_sec - df.date_ref
df["path"] = df["ref"].apply(lambda x: os.path.split(x)[0])
if what == "velocity":
df["filenames"] = df.path+"/disparity_maps/"+df.id_ref+"_"+df.id_sec+ prefix_ext+"-F_velocity.tif"
array_list = [np.ma.masked_invalid(helper.read_file(x,1)) for x in df.filenames if os.path.isfile(x)]
elif what == "direction":
df["filenames"] = df.path+"/disparity_maps/"+df.id_ref+"_"+df.id_sec+ prefix_ext+"-F_velocity.tif"
array_list = [np.deg2rad(helper.read_file(x,2)) for x in df.filenames if os.path.isfile(x)]
else:
df["filenames"] = df.path+"/disparity_maps/"+df.id_ref+"_"+df.id_sec+ prefix_ext+"-F.tif"
if what == "dx":
array_list = [helper.read_file(x,1) for x in df.filenames if os.path.isfile(x)]
elif what == "dy":
array_list = [helper.read_file(x,2) for x in df.filenames if os.path.isfile(x)]
else:
print("Please provide a valid input for what should be stacked [dx/dy/velocity/direction].")
#return
dt = [df["dt"][i].days for i in range(len(df)) if os.path.isfile(df.filenames[i])]
resolution = [helper.read_transform(df.filenames[i])[0] for i in range(len(df)) if os.path.isfile(df.filenames[i])]
#if polyfitting has been applied, there is no more need for masking and disparity maps only have two bands
bands = [helper.read_meta(df.filenames[i])["count"] for i in range(len(df)) if os.path.isfile(df.filenames[i])]
mask_list = [helper.read_file(df.filenames[i],3) for i in range(len(df)) if (os.path.isfile(df.filenames[i]) and bands[i] == 3)]
for i in range(len(dt)):
#masking
if bands[i] == 3:
print("Interpreting the third band as good pixel mask.")
masked = np.where(mask_list[i] == 1, array_list[i], np.nan)
masked = array_list[i]
#median shift
if medShift:
med = np.nanmedian(masked)
masked = masked - med
#dx in m/yr
array_list[i] = np.ma.masked_invalid(((masked*resolution[i])/dt[i])*365)
if what != "direction":
average_vals = np.ma.average(array_list, axis=0)
std_vals = np.ma.std(array_list, axis = 0)
else: #need to use circmean and circvar for angles
average_vals = np.rad2deg(circmean(array_list, axis=0, nan_policy="omit"))
std_vals = np.rad2deg(circstd(array_list, axis=0, nan_policy="omit"))
i = 0
while i < len(df):
#make sure to find valid reference
if os.path.isfile(df.filenames[i]):
helper.save_file([average_vals, std_vals], df.filenames[i], os.path.join(path,fn[:-4] + f"_average_{what}{prefix_ext}.tif"))
break
else:
i+=1
return os.path.join(path,fn[:-4] + f"_average_{what}{prefix_ext}.tif")
def shape_even(array):
#ensure image has even dimension, otherwise ffmpeg will complain
if array.shape[0]%2 != 0:
array = array[:-1,:]
if array.shape[1]%2 != 0:
array = array[:,:-1]
return array
def adjust_to_uint16(array):
#ffmpeg wants uint16 images, so stretch gray values between 0 and 2**16
img = array.astype(np.float32)
img[img == 0] = np.nan
img = helper.min_max_scaler(img)
img = img * (2**16-1)
img[np.isnan(img)] = 0
return img.astype(np.uint16)
def make_video(matches, video_name = "out.mp4", ext = "_remap", crop = 0):
"""
Create a video and GIF from a sequence of PlanetScope scenes.
Args:
matches (str or DataFrame): Path to the matchfile or pandas DataFrame.
video_name (str, optional): Name of the output video file. Defaults to "out.mp4".
ext (str, optional): Extension of the secondary images. Defaults to "_remap".
crop (int, optional): Number of pixels to crop from image edges. Defaults to 0.
Returns:
str: Path to the generated GIF file.
"""
if type(matches) == str:
try:
df = pd.read_csv(matches)
path,_ = os.path.split(matches)
except FileNotFoundError:
print("Could not find the provided matchfile.")
return
elif type(matches) == pd.core.frame.DataFrame:
df = matches.copy()
path,_ = os.path.split(df.ref.iloc[0])
else:
print("Matches must be either a string indicating the path to a matchfile or a pandas DataFrame.")
return
matches.sec = matches.sec.str.replace(".tif", ext+".tif", regex=True)
all_files = [matches.ref.unique(), list(matches.sec)]
all_files = [item for sublist in all_files for item in sublist]
all_files = sorted(all_files)
#match histograms to have similar brightness
final_files = []
ref_img = cv.imread(all_files[0], cv.IMREAD_UNCHANGED)
if crop > 0:
ref_img = ref_img[crop:-crop,crop:-crop]
ref_img = adjust_to_uint16(shape_even(ref_img))
font = cv.FONT_HERSHEY_DUPLEX
date = helper.get_date(helper.get_scene_id(all_files[0])).strftime('%Y-%m-%d')
ref_img = cv.putText(ref_img,date,(int(ref_img.shape[0]*0.05), int(ref_img.shape[0]*0.05)),font,2,(2**16,2**16,2**16),3)
cv.imwrite(os.path.join(path, all_files[0][:-4]+"_forGIF.tif"), ref_img)
final_files.append(os.path.join(path, all_files[0][:-4]+"_forGIF.tif"))
for f in all_files[1:]:
img = cv.imread(f, cv.IMREAD_UNCHANGED)
img = adjust_to_uint16(shape_even(img))
if crop > 0:
img = img[crop:-crop,crop:-crop]
matched = exposure.match_histograms(img, ref_img)
matched = matched.astype(np.uint16)
date = helper.get_date(helper.get_scene_id(f)).strftime('%Y-%m-%d')
matched = cv.putText(matched,date,(int(ref_img.shape[0]*0.05), int(ref_img.shape[0]*0.05)),font,2,(2**16,2**16,2**16),3)
cv.imwrite(os.path.join(path, f[:-4]+"_forGIF.tif"), matched)
final_files.append(os.path.join(path, f[:-4]+"_forGIF.tif"))
with open(os.path.join(path, 'file_list.txt'), 'w') as fl:
for line in final_files:
fl.write(f"file {line}\n")
#cannot use option -framerate with concat, see https://superuser.com/questions/1671523/ffmpeg-concat-input-txt-set-frame-rate
cmd = f"ffmpeg -f concat -safe 0 -i {os.path.join(path, 'file_list.txt')} -y -vf 'settb=AVTB,setpts=N/2/TB,fps=2' -c:v libx264 -pix_fmt yuv420p {os.path.join(path, video_name)}"
subprocess.run(cmd, shell = True)
cmd = f"ffmpeg -y -i {os.path.join(path, video_name)} -vf 'fps=5,scale=1080:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse' -loop 0 {os.path.join(path, video_name[:-4]+'.gif')}"
subprocess.run(cmd, shell = True)
return os.path.join(path, video_name[:-4]+'.gif')