-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamingTwitterDataToCSV.py
153 lines (127 loc) · 5.78 KB
/
streamingTwitterDataToCSV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/usr/bin/python
import sys
from tweepy import Stream
from tweepy import OAuthHandler
from tweepy.streaming import StreamListener
#import MySQLdb
import time
import datetime
from datetime import timezone
import json
import pandas as pd
import textblob
'''
EX DATA:
{"created_at":"Tue Oct 31 19:34:20 +0000 2017","id":925445854005284866,"id_str":"925445854005284866","text":"I wonder what kind of money are pumbing #BitcoinGold right now. \n\n#bitcoin" ...
'''
# replace mysql.server with "localhost" if you are running via your own server!
# server MySQL usernameMySQL pass Database name.
#conn = MySQLdb.connect("mysql.server","beginneraccount","cookies","beginneraccount$tutorial")
#c = conn.cursor()
'''
# Convert created_at to datetimes
df['created_at'] = pd.to_datetime(df['created_at'])
'''
#consumer key, consumer secret, access token, access secret.
consumer_key = 'E3xLP2DJVCojAuRc4dsIQhOhH'
consumer_secret = '46e1t5l5uZDUY3WfuNf0NwzsNVdPnJS7qtVjVc6HKwxfH0BYX4'
access_token = '398425873-SL80lXVpCqZN8zTTNWSz6pBWRdy1CwzdWQlRrBEu'
access_token_secret = 'FAmHxrdwJfnrcjRVKvuxVRpoQfezjS7npTc6dH20EfwAq'
#dataList = []
cols = ["Date", "Tweet", "Polarity", "Subjectivity"]
class listener(StreamListener):
def on_data(self, data):
try:
try:
dataList = []
#print(data)
#full tweet
#tweet = data.split(',"text":"')[1].split('","source')[0] #give us the right side of the split [1] and then the left side [0]
#print(tweet)
#saving the current tweet with unix timestamp
#saveCur = str(time.time())+':::'+tweet
#print(saveCur)
#dataList = []
allData = json.loads(data)
#remove new lines in file
#allData.rstrip()
tweet = allData["text"]
date = allData["created_at"]
blob = textblob.TextBlob(tweet).sentiment
polarity = int(round(blob.polarity))
subj = blob.subjectivity
#print(date+tweet)
#print("polarity is : "+ str(polarity))
#The polarity score is a float within the range [-1.0, 1.0] 1 is pos and -1 is neg
#The subjectivity is a float within the range [0.0, 1.0] where 0.0 is very objective and 1.0 is very subjective.
dataList.append([date, tweet, polarity, subj])
#list(filter((0).__ne__,dataList))
#print(dataList)
#print(list)
df = pd.DataFrame(dataList, columns=cols)
#formating datetime from bla to bla
#datetime.datetime.strptime(df["created_at"], '%a %b %d %H:%M:%S %z %Y').replace(tzinfo=timezone.utc).astimezone(tz=None).strftime('%Y-%m-%d %H:%M:%S')
if not df.empty:
df["Date"] = pd.to_datetime(df["Date"], format="%a %b %d %H:%M:%S +0000 %Y")
#pd.to_datetime(df['Date'])
#dropping duplicated timestamps
#df_clean = df.drop_duplicates(subset=['Date'],keep='last')
#uncomment if you want to removing rows with polarity values of zero
#df_clean = df[df.Polarity != 0]
'''
#uncomment if want to remove subjective tweets
df = df[df.Subjectivity != 1]
'''
#finding the running sum of sentiment for each day
df2 = df.set_index('Date')
df2['PolarityDailySum'] = df2.groupby(pd.TimeGrouper('D'))['Polarity'].cumsum()
df2['SubjectivityDailySum'] = df2.groupby(pd.TimeGrouper('D'))['Subjectivity'].cumsum()
#removing new line character from file
df2 = df2.replace('\n',' ', regex=True)
#reset the index
df2 = df2.reset_index()
#saving df to csv file
print(df2.head())
#dropping duplicated timestamps
df_clean = df.drop_duplicates(subset=['Date'],keep='last')
df2.to_csv('bitcoinSentimentClean.csv', mode='a') #later add if codition chceking if not empty then append mode='a'
#stream.filter(track=[t], stall_warnings=True)
#df = data
#print(df.head())
#saving to a file
#savef = open('twitterBitcoin.csv','a')
#savef.write(dataList)
#add new line
#savef.write('\n')
#savef.close()
#added to catch base exception, thread exception and
except (BaseException, Exception) as e:
print("failed ondata,",str(e))
print('Error on line {}'.format(sys.exc_info()[-1].tb_lineno), type(e).__name__, e)
time.sleep(25)
#clear the last thrown exception
#sys.exc_clear()
except Exception as e:
print('Error on line {}'.format(sys.exc_info()[-1].tb_lineno), type(e).__name__, e)
pass
#saving to a database
'''
all_data = json.loads(data)
tweet = all_data["text"]
username = all_data["user"]["screen_name"]
c.execute("INSERT INTO taula (time, username, tweet) VALUES (%s,%s,%s)",
(time.time(), username, tweet))
conn.commit()
print((username,tweet))
'''
return True
'''
def on_error(self, status):
print(status)
if status == 420:
return False
'''
auth = OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
twitterStream = Stream(auth, listener())
twitterStream.filter(track=["bitcoin"], stall_warnings=True, async=True)