forked from akshaybahadur21/Devanagiri-Recognizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDev-Rec.py
95 lines (87 loc) · 4.29 KB
/
Dev-Rec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import cv2
from keras.models import load_model
import numpy as np
from collections import deque
model1 = load_model('devanagari_model.h5')
def main():
letter_count = {0: 'CHECK', 1: '01_ka', 2: '02_kha', 3: '03_ga', 4: '04_gha', 5: '05_kna', 6: 'character_06_cha',
7: '07_chha', 8: '08_ja', 9: '09_jha', 10: '10_yna',
11: '11_taamatar',
12: '12_thaa', 13: '13_daa', 14: '14_dhaa', 15: '15_adna', 16: '16_tabala', 17: '17_tha',
18: '18_da',
19: '19_dha', 20: '20_na', 21: '21_pa', 22: '22_pha',
23: '23_ba',
24: '24_bha', 25: '25_ma', 26: '26_yaw', 27: '27_ra', 28: '28_la', 29: '29_waw', 30: '30_motosaw',
31: '31_petchiryakha',32: '32_patalosaw', 33: '33_ha',
34: '34_chhya', 35: '35_tra', 36: '36_gya', 37: 'CHECK'}
cap = cv2.VideoCapture(0)
Lower_green = np.array([110, 50, 50])
Upper_green = np.array([130, 255, 255])
pred_class=0
pts = deque(maxlen=512)
blackboard = np.zeros((480, 640, 3), dtype=np.uint8)
digit = np.zeros((200, 200, 3), dtype=np.uint8)
while (cap.isOpened()):
ret, img = cap.read()
img = cv2.flip(img, 1)
imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(imgHSV, Lower_green, Upper_green)
blur = cv2.medianBlur(mask, 15)
blur = cv2.GaussianBlur(blur, (5, 5), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
cnts = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)[1]
center = None
if len(cnts) >= 1:
contour = max(cnts, key=cv2.contourArea)
if cv2.contourArea(contour) > 250:
((x, y), radius) = cv2.minEnclosingCircle(contour)
cv2.circle(img, (int(x), int(y)), int(radius), (0, 255, 255), 2)
cv2.circle(img, center, 5, (0, 0, 255), -1)
M = cv2.moments(contour)
center = (int(M['m10'] / M['m00']), int(M['m01'] / M['m00']))
pts.appendleft(center)
for i in range(1, len(pts)):
if pts[i - 1] is None or pts[i] is None:
continue
cv2.line(blackboard, pts[i - 1], pts[i], (255, 255, 255), 10)
cv2.line(img, pts[i - 1], pts[i], (0, 0, 255), 5)
elif len(cnts) == 0:
if len(pts) != []:
blackboard_gray = cv2.cvtColor(blackboard, cv2.COLOR_BGR2GRAY)
blur1 = cv2.medianBlur(blackboard_gray, 15)
blur1 = cv2.GaussianBlur(blur1, (5, 5), 0)
thresh1 = cv2.threshold(blur1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
blackboard_cnts = cv2.findContours(thresh1.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)[1]
if len(blackboard_cnts) >= 1:
cnt = max(blackboard_cnts, key=cv2.contourArea)
print(cv2.contourArea(cnt))
if cv2.contourArea(cnt) > 2000:
x, y, w, h = cv2.boundingRect(cnt)
digit = blackboard_gray[y:y + h, x:x + w]
# newImage = process_letter(digit)
pred_probab, pred_class = keras_predict(model1, digit)
print(pred_class, pred_probab)
pts = deque(maxlen=512)
blackboard = np.zeros((480, 640, 3), dtype=np.uint8)
cv2.putText(img, "Conv Network : " + str(letter_count[pred_class]), (10, 470),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.imshow("Frame", img)
cv2.imshow("Contours", thresh)
k = cv2.waitKey(10)
if k == 27:
break
def keras_predict(model, image):
processed = keras_process_image(image)
print("processed: " + str(processed.shape))
pred_probab = model.predict(processed)[0]
pred_class = list(pred_probab).index(max(pred_probab))
return max(pred_probab), pred_class
def keras_process_image(img):
image_x = 32
image_y = 32
img = cv2.resize(img, (image_x, image_y))
img = np.array(img, dtype=np.float32)
img = np.reshape(img, (-1, image_x, image_y, 1))
return img
keras_predict(model1, np.zeros((32, 32, 1), dtype=np.uint8))
main()