forked from akshaybahadur21/Devanagiri-Recognizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHindi_Letters.py
82 lines (68 loc) · 2.95 KB
/
Hindi_Letters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
from keras import layers
from keras.layers import Input, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D
from keras.layers import AveragePooling2D, MaxPooling2D, Dropout, GlobalMaxPooling2D, GlobalAveragePooling2D
from keras.utils import np_utils, print_summary
import pandas as pd
from keras.models import Sequential
from keras.callbacks import ModelCheckpoint
import keras.backend as K
K.set_image_data_format('channels_last')
def keras_model(image_x,image_y):
num_of_classes = 37
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(5, 5), input_shape=(image_x, image_y, 1), activation='sigmoid'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'))
model.add(Conv2D(64, (5, 5), activation='sigmoid'))
model.add(MaxPooling2D(pool_size=(5, 5), strides=(5, 5), padding='same'))
model.add(Flatten())
model.add(Dense(num_of_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
filepath = "devanagari_model.h5"
checkpoint1 = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
#checkpoint2 = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint1]
return model, callbacks_list
def main():
data = pd.read_csv("data.csv")
dataset = np.array(data)
np.random.shuffle(dataset)
X = dataset
Y = dataset
X = X[:, 0:1024]
Y = Y[:, 1024]
X_train = X[0:70000, :]
X_train = X_train / 255.
X_test = X[70000:72001, :]
X_test = X_test / 255.
# Reshape
Y = Y.reshape(Y.shape[0], 1)
Y_train = Y[0:70000, :]
Y_train = Y_train.T
Y_test = Y[70000:72001, :]
Y_test = Y_test.T
print("number of training examples = " + str(X_train.shape[0]))
print("number of test examples = " + str(X_test.shape[0]))
print("X_train shape: " + str(X_train.shape))
print("Y_train shape: " + str(Y_train.shape))
print("X_test shape: " + str(X_test.shape))
print("Y_test shape: " + str(Y_test.shape))
image_x = 32
image_y = 32
train_y = np_utils.to_categorical(Y_train)
test_y = np_utils.to_categorical(Y_test)
train_y = train_y.reshape(train_y.shape[1], train_y.shape[2])
test_y = test_y.reshape(test_y.shape[1], test_y.shape[2])
X_train = X_train.reshape(X_train.shape[0], 32, 32, 1)
print("X_train shape: " + str(X_train.shape))
print("Y_train shape: " + str(train_y.shape))
X_test = X_test.reshape(X_test.shape[0], 32, 32, 1)
model, callbacks_list = keras_model(image_x, image_y)
model.fit(X_train, train_y, validation_data=(X_test, test_y), epochs=8, batch_size=64,
callbacks=callbacks_list)
scores = model.evaluate(X_test, test_y, verbose=0)
print("CNN Error: %.2f%%" % (100 - scores[1] * 100))
print_summary(model)
model.save('devanagari_refined.h5')
main()
K.clear_session();