forked from santi-pdp/segan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiscriminator.py
84 lines (80 loc) · 3.84 KB
/
discriminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from __future__ import print_function
import tensorflow as tf
from tensorflow.contrib.layers import batch_norm, fully_connected, flatten
from tensorflow.contrib.layers import xavier_initializer
from ops import *
import numpy as np
def discriminator(self, wave_in, reuse=False):
"""
wave_in: waveform input
"""
# take the waveform as input "activation"
in_dims = wave_in.get_shape().as_list()
hi = wave_in
if len(in_dims) == 2:
hi = tf.expand_dims(wave_in, -1)
elif len(in_dims) < 2 or len(in_dims) > 3:
raise ValueError('Discriminator input must be 2-D or 3-D')
batch_size = int(wave_in.get_shape()[0])
# set up the disc_block function
with tf.variable_scope('d_model') as scope:
if reuse:
scope.reuse_variables()
def disc_block(block_idx, input_, kwidth, nfmaps, bnorm, activation,
pooling=2):
with tf.variable_scope('d_block_{}'.format(block_idx)):
if not reuse:
print('D block {} input shape: {}'
''.format(block_idx, input_.get_shape()),
end=' *** ')
bias_init = None
if self.bias_D_conv:
if not reuse:
print('biasing D conv', end=' *** ')
bias_init = tf.constant_initializer(0.)
downconv_init = tf.truncated_normal_initializer(stddev=0.02)
hi_a = downconv(input_, nfmaps, kwidth=kwidth, pool=pooling,
init=downconv_init, bias_init=bias_init)
if not reuse:
print('downconved shape: {} '
''.format(hi_a.get_shape()), end=' *** ')
if bnorm:
if not reuse:
print('Applying VBN', end=' *** ')
hi_a = self.vbn(hi_a, 'd_vbn_{}'.format(block_idx))
if activation == 'leakyrelu':
if not reuse:
print('Applying Lrelu', end=' *** ')
hi = leakyrelu(hi_a)
elif activation == 'relu':
if not reuse:
print('Applying Relu', end=' *** ')
hi = tf.nn.relu(hi_a)
else:
raise ValueError('Unrecognized activation {} '
'in D'.format(activation))
return hi
beg_size = self.canvas_size
# apply input noisy layer to real and fake samples
hi = gaussian_noise_layer(hi, self.disc_noise_std)
if not reuse:
print('*** Discriminator summary ***')
for block_idx, fmaps in enumerate(self.d_num_fmaps):
hi = disc_block(block_idx, hi, 31,
self.d_num_fmaps[block_idx],
True, 'leakyrelu')
if not reuse:
print()
if not reuse:
print('discriminator deconved shape: ', hi.get_shape())
hi_f = flatten(hi)
#hi_f = tf.nn.dropout(hi_f, self.keep_prob_var)
d_logit_out = conv1d(hi, kwidth=1, num_kernels=1,
init=tf.truncated_normal_initializer(stddev=0.02),
name='logits_conv')
d_logit_out = tf.squeeze(d_logit_out)
d_logit_out = fully_connected(d_logit_out, 1, activation_fn=None)
if not reuse:
print('discriminator output shape: ', d_logit_out.get_shape())
print('*****************************')
return d_logit_out