-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path15. 3Sum.py
69 lines (46 loc) · 1.56 KB
/
15. 3Sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
"""
Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that
i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
"""
class Solution:
def threeSum(self, nums: list[int]) -> list[list[int]]:
res = []
nums.sort()
for i, num in enumerate(nums):
if i > 0 and num == nums[i - 1]:
continue
l, r = i + 1, len(nums) - 1
while l < r:
three_sum = num + nums[l] + nums[r]
if three_sum > 0:
r -= 1
elif three_sum < 0:
l += 1
else:
res.append([num, nums[l], nums[r]])
l += 1
while nums[l - 1] == nums[l] and l < r:
l += 1
r -= 1
return res