-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathremove_mean_inpainting.m
43 lines (43 loc) · 1.33 KB
/
remove_mean_inpainting.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
% this function removes mean of intensity values. If inputs have missing
% values, this function neglects them and comptutes mean of intensity based
% on observed values.
%
% select_dimension=1, the signals are stored in columns. 2, the signals are
% stored in rows
%
function [Xn_noDC,mean_columns]=remove_mean_inpainting(Xn,select_dimension)
if ~exist('select_dimension','var') || isempty(select_dimension)
select_dimension=1;
end
if select_dimension==1
num_signals=size(Xn,2);
dim=size(Xn,1);
num_nans=sum(isnan(Xn(:,1)));
num_valid=dim-num_nans;% number of valid elements
if num_nans~=0
Xn2=Xn;
Xn2=reshape(Xn2(~isnan(Xn2)),num_valid,num_signals);
else
Xn2=Xn;
end
mean_columns=mean(Xn2);
t=~isnan(Xn);
Xn_noDC=nan(size(Xn));
Xn_noDC(t)=Xn2-repmat(mean_columns,num_valid,1);% size(Xn2,1),1
else
% signals are stored in rows of the matrix Xn
num_signals=size(Xn,1);
dim=size(Xn,2);
num_nans=sum(isnan(Xn(1,:)));
num_valid=dim-num_nans;% number of valid elements
if num_nans~=0
Xn2=Xn;
Xn2=reshape(Xn2(~isnan(Xn2)),num_signals,num_valid);
else
Xn2=Xn;
end
mean_columns=mean(Xn2,2);
t=~isnan(Xn);
Xn_noDC=nan(size(Xn));
Xn_noDC(t)=Xn2-repmat(mean_columns,1,num_valid);
end