-
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmmtcam.py
1091 lines (860 loc) · 34.5 KB
/
mmtcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
mmtcam
======
Set of functions to identify stars and stack them to construct the PSF for
MMTCam for each image. Intended to understand the cause of unusual PSFs
(e.g., double, oscillations, elongated profiles)
"""
import sys, os
from mmirs import systime
from os.path import exists
import commands
from astropy.io import ascii as asc
from astropy.io import fits
from astropy import log
import astropy.units as u
import numpy as np
import matplotlib.pyplot as plt
import glob
from astropy.table import Table
from astropy.stats import sigma_clipped_stats
from photutils import DAOStarFinder
# Mod on 23/02/2017 to use IRAF's zscale intervals
from astropy.visualization import ZScaleInterval
zscale = ZScaleInterval()
#from astropy.visualization import SqrtStretch
from astropy.visualization.mpl_normalize import ImageNormalize
from photutils import CircularAperture
from astropy.nddata import Cutout2D
from matplotlib.backends.backend_pdf import PdfPages
from pylab import subplots_adjust # + on 24/02/2017
import scipy.optimize as opt # + on 25/02/2017
# + on 26/02/2017
from datetime import datetime, timedelta # Mod on 28/02/2017
from astropy.time import Time, TimezoneInfo
from ccdproc import cosmicray_median # + on 26/02/2017
from scipy.ndimage import uniform_filter # + on 26/02/2017
from astroquery.irsa import Irsa as IRSA # + on 27/02/2017
import astropy.coordinates as coords # + on 27/02/2017
from astropy.wcs import WCS # + on 28/02/2017
import pymysql # + on 28/02/2017
out_cat_dir = 'daofind/' # + on 23/02/2017
# + on 24/02/2017 | Mod on 27/02/2017 for less padding
bbox_props = dict(boxstyle="square,pad=0.15", fc="w", alpha=0.75, ec="none")
c_levels = 0.2+0.1*np.arange(9)
f_s = 2*np.sqrt(2*np.log(2)) # sigma-FWHM conversion | + on 25/02/2017
#Moved up on 27/02/2017
pscale = 0.16 * u.arcsec
v_pscale = pscale.to(u.arcsec).value
# Moved up on 01/03/2017
utc_mst = TimezoneInfo(utc_offset=-7*u.hour)
mst_utc = TimezoneInfo(utc_offset=+7*u.hour)
# Convert from m/s to mph | + on 01/03/2017
mph = u.imperial.mile/u.hour
mph_conv = (1 * u.m/u.s).to(mph).value
def get_seqno(files):
# + on 23/02/2017
t_files = [os.path.basename(file) for file in files]
seqno = [file.replace('.fits.gz','').replace('.fits','').split('.')[1] for
file in t_files]
return np.array(seqno)
def get_files(path0):
# + on 23/02/2017
# Later Mod on 23/02/2017 for seqno
files = glob.glob(path0+'*fits*') #Mod on 23/02/2017
seqno = get_seqno(files) # Later + on 23/02/2017
s_idx = np.argsort(np.array(seqno))
files = np.array(files)[s_idx]
return files, seqno[s_idx]
#enddef
def remove_dup_sources(s_cat, verbose=False):
# + on 23/02/2017
n_sources = len(s_cat)
bad = []
x0 = s_cat['xcentroid']
y0 = s_cat['ycentroid']
for nn in xrange(n_sources):
t_idx = np.arange(nn+1,n_sources)
x_diff, y_diff = x0[t_idx]-x0[nn], y0[t_idx]-y0[nn]
i_match = np.where(np.sqrt(x_diff**2 + y_diff**2) <= 15.0)[0]
if len(i_match) > 0:
i_match = t_idx[i_match]
if len(i_match) == 1:
if s_cat[i_match]['peak'] < s_cat[nn]['peak']:
bad += [i_match.tolist()[0]]
else:
bad += [nn]
else:
if verbose == True: print nn, 'too many : ', len(i_match)
bad += i_match.tolist()
return bad
#enddef
def hdr_annotate(h0, ax):
'''
Define string for annotation in psf_contours()
Parameters
----------
h0 : astropy.io.fits.header.Header
FITS header
ax : matplotlib.axes._subplots.AxesSubplot
Axes to use for annotation
Returns
-------
None.
Notes
-----
Created by Chun Ly, 24 February 2017
Modified by Chun Ly, 26 February 2017
- Add commmanded RA,Dec offsets to annotated text
'''
txt0 = r'$t_{\rm exp}$=%.1f, sz=%.2f, HA=%s' % (h0['EXPTIME'],h0['AIRMASS'],
h0['HA'])
txt0 += '\n'
txt0 += r'$\alpha$=%s, $\delta$=%s' % (h0['RA'], h0['DEC'])
txt0 += '\n'
# Include commanded offsets | + on 26/02/2017
rao, deo = np.float(h0['RAOFF']), np.float(h0['DECOFF'])
txt0 += r'Offsets: $\alpha$=%.2f", $\delta$=%.2f"' % (rao, deo)
txt0 += '\n'
txt0 += 'Alt=%s, Az=%s' % (h0['OBJCTALT'], h0['OBJCTAZ'])
txt0 += '\n'
txt0 += r'$\theta_{\rm rot}$=%.2f, $\theta_{\rm para}$=%.2f, ' % \
(h0['ROTANGLE'], h0['PARANG'])
txt0 += r'$\theta_{\rm pos}$=%.2f' % h0['POSANG']
ax.annotate(txt0, [0.025,0.025], ha='left', va='bottom',
xycoords='axes fraction', fontsize=8, bbox=bbox_props)
def get_mst(h0):
'''
Get string-formatted MST time from UTC datetime
Parameters
----------
h0 : astropy.io.fits.header.Header
FITS header
Returns
-------
t.strftime : string
Time in HH:MM:SS format
Notes
-----
Created by Chun Ly, 26 February 2017
'''
t = Time(h0['DATE-OBS']).to_datetime(timezone=utc_mst)
return t.strftime('%H:%M:%S')
#enddef
def draw_NE_vector(h0, ax0):
'''
Draw N and E vectors based on CD matrix
Parameters
----------
h0 : astropy.io.fits.header.Header
FITS header
Returns
-------
None
Notes
-----
Created by Chun Ly, 26 February 2017
Modified by Chun Ly, 01 March 2017
- Slight shift for [ry]
'''
cd = [h0[key] for key in ['CD1_1','CD1_2','CD2_1','CD2_2']]
# Draw N vector
mN = np.max(np.abs(cd[2:]))
dxN, dyN = cd[2]/mN, cd[3]/mN
mE = np.max(np.abs(cd[:2]))
dxE, dyE = cd[0]/mE, cd[1]/mE
# Slight y-shift | Mod on 01/03/2017
if dxN != 1 or dxE != 1: rx, ry = -2.40, -0.25
if dxN == 1 or dxE == 1: rx, ry = -3.00, -0.25
if dyN == 1 and dxE == 1: rx, ry = -3.50, -0.25
ax0.arrow(rx, ry, dxN, dyN, head_width=0.05, head_length=0.1, fc='k', ec='k')
if np.abs(dyN/dxN) > 1:
if dyN == -1: haN, vaN = 'left', 'top'
if dyN == +1: haN, vaN = 'left', 'bottom'
if np.abs(dxN/dyN) > 1:
if dxN == -1: haN, vaN = 'right', 'bottom'
if dxN == +1: haN, vaN = 'left', 'bottom'
ax0.annotate('N', [rx+dxN, ry+dyN], xycoords='data', ha=haN, va=vaN)
# Draw E vector
ax0.arrow(rx, ry, dxE, dyE, head_width=0.05, head_length=0.1, fc='k', ec='k')
if np.abs(dyE/dxE) > 1:
if dyE == -1: haE, vaE = 'left', 'top'
if dyE == +1: haE, vaE = 'left', 'bottom'
if np.abs(dxE/dyE) > 1:
if dxE == -1: haE, vaE = 'right', 'bottom'
if dxE == +1: haE, vaE = 'left', 'bottom'
ax0.annotate('E', [rx+dxE, ry+dyE], xycoords='data', ha=haE, va=vaE)
#enddef
def fwhm_fwqm_size(post, pscale):
'''
Computes FWHM based on a provided cutout of the PSF. Code uses the number
of pixels. Handles non-Gaussian PSFs
Parameters
----------
image : numpy.array
2-D image
Returns
-------
fwhm0 : float
Full-width at half maximum based on number of pixels (area)
fwqm0 : float
Full-width at quarter maximum based on number of pixels (area)
Notes
-----
Created by Chun Ly, 25 February 2017
'''
max0 = np.nanmax(post) # Mod on 28/02/2017
i_fwhm = np.where(post >= max0/2.0)
i_fwqm = np.where(post >= max0/4.0)
# Area in arcsec^2
area_fwhm = len(i_fwhm[0]) * (pscale.to(u.arcsec).value)**2
area_fwqm = len(i_fwqm[0]) * (pscale.to(u.arcsec).value)**2
fwhm0 = 2.0*np.sqrt(area_fwhm/np.pi)
fwqm0 = 2.0*np.sqrt(area_fwqm/np.pi)
return fwhm0, fwqm0
#enddef
def gauss2d((x, y), amplitude, xo, yo, sigma_x, sigma_y, theta, offset):
'''
2-D Gaussian for opt.curve_fit()
Parameters
----------
(x,y) : numpy.ndarray
x,y grid from numpy.meshgrid()
amplitude : float
Peak of Gaussian
xo : float
Gaussian center value along x
yo : float
Gaussian center value along y
sigma_x : float
Gaussian sigma along x
sigma_y : float
Gaussian sigma along y
theta : float
Orientation along major axis of Gaussian. Positive is clock-wise.
offset : float
Level of continuum
Returns
-------
g.ravel() : numpy.ndarray
Contiguous flattened array
Notes
-----
Created by Chun Ly, 25 February 2017
'''
xo = float(xo)
yo = float(yo)
a = (np.cos(theta)**2)/(2*sigma_x**2) + (np.sin(theta)**2)/(2*sigma_y**2)
b = -(np.sin(2*theta))/(4*sigma_x**2) + (np.sin(2*theta))/(4*sigma_y**2)
c = (np.sin(theta)**2)/(2*sigma_x**2) + (np.cos(theta)**2)/(2*sigma_y**2)
g = offset + amplitude*np.exp( - (a*((x-xo)**2) + 2*b*(x-xo)*(y-yo)
+ c*((y-yo)**2)))
return g.ravel()
#enddef
def query_mmtlog_wind(u_start, u_stop, user='webuser', passwd='', path0='',
silent=False, verbose=True):
'''
Query ops.mmto.arizona.edu's log for wind data.
Note: This code requires specifying the password
Parameters
----------
u_start : string
UTC start time. Formatted as 'YYYY-MM-DD HH:MM:SS'
u_stop : string
UTC stop time. Formatted as 'YYYY-MM-DD HH:MM:SS'
user : string
Username to login. Default: 'webuser'
passwd : string
Password for user. Default: ''
path0 : string
Directory path to files.
silent : boolean
Turns off stdout messages. Default: False
verbose : boolean
Turns on additional stdout messages. Default: True
Returns
-------
tab0 : astropy.table.Table
Astropy table containing young and young2 wind data
Notes
-----
Created by Chun Ly, 28 February 2017
Modified by Chun Ly, 01 March 2017
- Return tab0
'''
if passwd == '':
log.error('Must specify password!')
log.error('Exiting!!!')
return
if silent == False: log.info('### Begin query_mmtlog_wind: '+systime())
m_start = Time(u_start).to_datetime(timezone=utc_mst)
m_start = m_start.strftime('%Y-%m-%d %H:%M%:%S')
m_stop = Time(u_stop).to_datetime(timezone=utc_mst) + \
timedelta(seconds=10*60.0) # Add 10 min. to have enough buffer
m_stop = m_stop.strftime('%Y-%m-%d %H:%M%:%S')
conn = pymysql.connect(host='ops.mmto.arizona.edu', user=user,
passwd=passwd, db='mmtlogs')
cur = conn.cursor()
sql1 = "SELECT timestamp,young_wind_speed,young_wind_direction FROM "+\
"young_background_log where timestamp >= '"+m_start+"' AND "+\
"timestamp < '"+m_stop+"'"
# print sql1
n_entries = cur.execute(sql1)
results1 = cur.fetchall()
sql2 = sql1.replace('young', 'young2')
cur.execute(sql2)
results2 = cur.fetchall()
time0 = np.repeat('XXXX-XX-XX XX:XX:XX', n_entries)
speed1 = np.zeros(n_entries)
direct1 = np.zeros(n_entries)
speed2 = np.zeros(n_entries)
direct2 = np.zeros(n_entries)
for nn in xrange(n_entries):
time0[nn] = results1[nn][0].isoformat()
speed1[nn] = results1[nn][1]
direct1[nn] = results1[nn][2]
speed2[nn] = results2[nn][1]
direct2[nn] = results2[nn][2]
outfile = path0+'wind_data.tbl'
vec0 = [time0, speed1, direct1, speed2, direct2]
names0 = ('MST_time','speed1', 'direct1', 'speed2', 'direct2')
tab0 = Table(vec0, names=names0)
if silent == False: log.info('## Writing : '+outfile)
asc.write(tab0, outfile, format='fixed_width_two_line', overwrite=True)
if silent == False: log.info('### End query_mmtlog_wind: '+systime())
return tab0
#enddef
def wind_avg_max(wind_tab0, h0):
'''
Compute average, maximum and avg direction of wind from wind data for
each observation period
Parameters
----------
wind_tab0 : astropy.table.Table
Astropy table containing young and young2 wind data
h0 : astropy.io.fits.header.Header
FITS header
Returns
-------
h0 : astropy.io.fits.header.Header
Updated FITS header
Notes
-----
Created by Chun Ly, 1 March 2017
'''
t_start = Time(h0['DATE-OBS']).to_datetime(timezone=utc_mst)
t_stop = t_start + timedelta(seconds=h0['EXPTIME'])
# Note: mjd_start/mjd_stop is MJD associated with MST time not UTC
mjd_start = Time(t_start.strftime('%Y-%m-%d %H:%M%:%S')).mjd
mjd_stop = Time(t_stop.strftime('%Y-%m-%d %H:%M%:%S')).mjd
time0 = Time(wind_tab0['MST_time'])
mjd0 = time0.mjd
t_idx = np.where((mjd0 >= mjd_start) & (mjd0 <= mjd_stop))[0]
avg1 = np.average(wind_tab0['speed1'][t_idx]*mph_conv)
max1 = np.max(wind_tab0['speed1'][t_idx]*mph_conv)
dir1 = np.average(wind_tab0['direct1'][t_idx])
avg2 = np.average(wind_tab0['speed2'][t_idx]*mph_conv)
max2 = np.max(wind_tab0['speed2'][t_idx]*mph_conv)
dir2 = np.average(wind_tab0['direct2'][t_idx])
#young1 = {'avg':avg1, 'max':max1, 'dir':dir1}
#young2 = {'avg':avg2, 'max':max2, 'dir':dir2}
#return young1, young2
# Update header with wind data
h0.set('Y1_AVG', avg1, 'YOUNG1 avg wind speed [mph]')
h0.set('Y1_MAX', max1, 'YOUNG1 max wind speed [mph]')
h0.set('Y1_DIR', dir1, 'YOUNG1 avg wind direction [deg]')
h0.set('Y2_AVG', avg2, 'YOUNG2 avg wind speed [mph]')
h0.set('Y2_MAX', max2, 'YOUNG2 max wind speed [mph]')
h0.set('Y2_DIR', dir2, 'YOUNG1 avg wind direction [deg]')
return h0
#enddef
def check_extended(h0, s_cat, seqno, return_irsa_cat=False, silent=False,
verbose=True):
'''
Query the 2MASS extended source catalog (XSC) to identify contamination
from extended sources
Parameters
----------
s_cat : astropy.table.Table
Astropy-formatted table
hd0 : FITS header
FITS header containing WCS to determine RA/Dec
silent : boolean
Turns off stdout messages. Default: False
verbose : boolean
Turns on additional stdout messages. Default: True
Returns
-------
Notes
-----
Created by Chun Ly, 27 February 2017
Modified by Chun Ly, 28 February 2017
- Include extended galaxies slightly outside of MMTCam FoV
- Use elliptical formula to determine if inside extended source
'''
if silent == False: log.info('### Begin check_extended: '+systime())
size0 = 1.25*h0['NAXIS1'] * pscale # Size of region to search
c0 = coords.SkyCoord(ra=h0['CRVAL1'], dec=h0['CRVAL2'], unit=u.deg)
i_cat0 = IRSA.query_region(c0, catalog='fp_xsc', spatial='Box',
width=size0)
flag_ext = np.zeros(len(s_cat)) # + on 28/02/2017
# Check if daofind sources are within elliptical region of extended sources
# + on 28/02/2017
if len(i_cat0) == 0:
log.info('No extended source found for : '+seqno)
else:
log.info('Extended sources found for : '+seqno)
if verbose == True: print i_cat0
w0 = WCS(h0)
sRA, sDec = w0.wcs_pix2world(s_cat['xcentroid'], s_cat['ycentroid'], 1)
sc = coords.SkyCoord(ra=sRA, dec=sDec, unit=u.deg)
for cc in range(len(i_cat0)):
ic = coords.SkyCoord(ra=i_cat0['clon'][cc], dec=i_cat0['clat'][cc],
unit=(u.hour, u.deg))
#dist0 = ic.separation(sc).to(u.arcsec).value
dra = (ic.ra.deg - sRA)*3600.0 * np.cos(np.radians(ic.dec.deg))
ddec = (ic.dec.deg - sDec)*3600.0
ang0 = np.radians(90.0-i_cat0['sup_phi'])
maj0 = i_cat0['r_k20fe'][cc]
min0 = maj0*i_cat0['sup_ba'][cc]
dist0 = ((dra*np.cos(ang0) + ddec*np.sin(ang0))/maj0)**2 + \
((dra*np.sin(ang0) - ddec*np.cos(ang0))/min0)**2
ext0 = np.where(dist0 <= 1.0)[0]
flag_ext[ext0] = 1
# print s_cat[ext0]
if silent == False: log.info('### End check_extended: '+systime())
if return_irsa_cat == False:
return flag_ext
else: flag_ext, i_cat0
#enddef
def find_stars(files=None, path0=None, plot=False, out_pdf_plot=None,
silent=False, verbose=True):
'''
Find stars in an image and return a catalog of positions
Parameters
----------
files : list
List of files
path0 : string
Directory path to files.
silent : boolean
Turns off stdout messages. Default: False
verbose : boolean
Turns on additional stdout messages. Default: True
Returns
-------
Notes
-----
Created by Chun Ly, 23 February 2017
- Later modified to plot images and overlay sources
- Adjust scale to using IRAF's zscale
- Call remove_dup_sources()
Modified by Chun Ly, 28 February 2017
- Call check_extended() to get flag indicating extended, flag_ext
'''
if silent == False: log.info('### Begin find_stars: '+systime())
if files == None and path0 == None:
log.error('files and path0 keywords not provided')
log.error('Exiting!!!')
return
if files == None and path0 != None:
files, seqno = get_files(path0)
# path0 = None # Reset since files will have full path
else:
if files != None: seqno = get_seqno(files)
# Later + on 23/02/2017
out_cat_dir0 = path0+out_cat_dir
if not exists(out_cat_dir0):
if silent == False: log.info('Creating : '+out_cat_dir0)
os.mkdir(out_cat_dir0)
s_date = path0.split('/')[-2] # Mod on 25/02/2017 for minor bug
if plot == True:
if out_pdf_plot == None:
out_pdf_plot = path0+'find_stars.pdf'
pp = PdfPages(out_pdf_plot)
for ff in xrange(len(files)): #[34,35,36,37,38,39]: #xrange(len(files)):
basename = os.path.basename(files[ff])
image, hdr = fits.getdata(files[ff], header=True)
mean, median, std = sigma_clipped_stats(image, sigma=2.0, iters=5)
image_sub = image - median
if verbose == True:
log.info('%s mean/med/sig: %f %f %f' %
(seqno[ff], mean, median, std))
#Later Mod on 23/02/2017 to lower threshold
daofind = DAOStarFinder(fwhm=8.0, threshold=5.*std)
s_cat = daofind(image_sub)
# Exclude saturated objects
unsat = np.where(s_cat['peak'] <= 60000.0)[0]
sat = np.where(s_cat['peak'] > 60000.0)[0]
cat_sat = s_cat[sat]
s_cat = s_cat[unsat]
s_cat.sort(['peak'])
s_cat.reverse()
# s_cat.pprint()
# + on 28/02/2017
flag_ext = check_extended(hdr, s_cat, seqno[ff], verbose=False)
i_extend = np.where(flag_ext == 1)[0]
i_point = np.where(flag_ext == 0)[0]
if len(i_extend) > 0:
cat_ext = s_cat[i_extend]
s_cat = s_cat[i_point]
#endif
# Later + on 23/02/2017
bad = remove_dup_sources(s_cat)
if len(bad) > 0:
cat_bad = s_cat[bad]
s_cat.remove_rows(bad)
if ff == 0 and silent == False: s_cat.pprint()
# + on 23/02/2017
out_cat = out_cat_dir0+basename.replace('.fits.gz','.tbl')
out_cat = out_cat.replace('.fits','.tbl')
s_cat.write(out_cat, format='ascii.fixed_width_two_line',
overwrite=True)
# Write extended catalog | + on 28/02/2017
if len(i_extend) >0:
out_cat_ext = out_cat.replace('.tbl','.ext.tbl')
cat_ext.write(out_cat_ext, format='ascii.fixed_width_two_line',
overwrite=True)
# Later + on 23/02/2017
if len(bad) >0 and verbose == True:
log.info('The following will be removed : ')
cat_bad.pprint()
if len(bad) >0:
out_cat_bad = out_cat.replace('.tbl','.bad.tbl')
cat_bad.write(out_cat_bad, format='ascii.fixed_width_two_line',
overwrite=True)
if plot == True:
pos0 = (s_cat['xcentroid'], s_cat['ycentroid'])
aper0 = CircularAperture(pos0, r=8.)
pos0 = (cat_sat['xcentroid'], cat_sat['ycentroid'])
sat_aper0 = CircularAperture(pos0, r=8.)
pos0 = (cat_bad['xcentroid'], cat_bad['ycentroid'])
bad_aper0 = CircularAperture(pos0, r=8.)
fig, ax = plt.subplots()
z1, z2 = zscale.get_limits(image_sub)
# print z1, z2
norm = ImageNormalize(vmin=z1, vmax=z2) #stretch=SqrtStretch())
ax.imshow(image_sub, cmap='Greys', origin='lower', norm=norm)
aper0.plot(color='blue', lw=1.5, alpha=0.5)
sat_aper0.plot(color='red', lw=1.5, alpha=0.5)
bad_aper0.plot(color='magenta', lw=1.5, alpha=0.5)
# Label bright sources | + on 28/02/2017
bright = np.where(s_cat['peak'] >= 0.33*max(s_cat['peak']))[0]
for nn in bright:
t_pos = [s_cat['xcentroid'][nn], s_cat['ycentroid'][nn]+10]
ax.annotate(str(nn+1), t_pos, xycoords='data', ha='center',
va='bottom', color='b', weight='medium')
# Mark sources excluded by extended criteria | + on 28/02/2017
if len(i_extend) > 0:
ax.plot(cat_ext['xcentroid'], cat_ext['ycentroid'], 'rx', linewidth=2)
t_ann = s_date+'/'+os.path.basename(files[ff])
ax.set_title(t_ann, loc=u'center', fontsize=14, weight='bold')
#ax.annotate(t_ann, [0.025,0.975], xycoords='axes fraction',
# ha='left', va='top', bbox=bbox_props)
ax.set_xlim([0,hdr['NAXIS1']])
ax.set_ylim([0,hdr['NAXIS2']])
ax.set_xlabel('X [pixels]')
ax.set_ylabel('Y [pixels]')
fig.set_size_inches(8,8)
fig.savefig(pp, format='pdf', bbox_inches='tight')
#endfor
if plot == True:
if silent == False:
log.info('## Writing : '+out_pdf_plot+' | '+systime())
pp.close()
if silent == False: log.info('### End find_stars: '+systime())
#enddef
def make_postage(files=None, path0=None, n_stack=5, size=50,
user='webuser', passwd='', silent=False, verbose=True):
'''
Create cut-outs and median stack to produce image of the
point-spread function
Parameters
----------
files : list
List of files
path0 : string
Path to files. If not provided it is assumed that [files] has the full
path name
silent : boolean
Turns off stdout messages. Default: False
verbose : boolean
Turns on additional stdout messages. Default: True
Returns
-------
Notes
-----
Created by Chun Ly, 23 February 2017
Modified by Chun Ly, 24 February 2017
- Include FITS header in cutout images
Modified by Chun Ly, 26 February 2017
- Use cosmicray_median() to interpolate over CRs
- Include number of stack sources in FITS header
Modified by Chun Ly, 28 February 2017
- Call query_mmtlog_wind() function
- Add user and passwd keyword to pass on
Modified by Chun Ly, 1 March 2017
- Check if wind data table is available before running query_mmtlog_wind()
- Call wind_avg_max() function
'''
if files == None and path0 == None:
log.error('files and path0 keywords not provided')
log.error('Exiting!!!')
return
if silent == False: log.info('### Begin make_postage: '+systime())
if files == None and path0 != None:
files, seqno = get_files(path0)
# path0 = None # Reset since files will have full path
else:
if files != None: seqno = get_seqno(files)
# Query for wind data | + on 28/02/2017
# Mod on 01/03/2017 to check if file exists
wind_file = path0+'wind_data.tbl'
if not exists(wind_file):
u_start = fits.getheader(files[0])['DATE-OBS']
u_stop = fits.getheader(files[-1])['DATE-OBS']
wind_tab0 = query_mmtlog_wind(u_start, u_stop, user=user,
passwd=passwd, path0=path0)
else:
if silent == False: log.info('### File found! Reading : '+wind_file)
wind_tab0 = asc.read(wind_file, format='fixed_width_two_line')
post_dir0 = path0 + 'post/'
if not exists(post_dir0):
if silent == False: log.info('Creating : '+post_dir0)
os.mkdir(post_dir0)
out_cat_dir0 = path0+out_cat_dir
for ff in xrange(len(files)):
basename = os.path.basename(files[ff])
image, hdr = fits.getdata(files[ff], header=True)
mean, median, std = sigma_clipped_stats(image, sigma=2.0, iters=5)
image_sub = image - median
in_cat = out_cat_dir0+basename.replace('.fits.gz','.tbl').\
replace('.fits','.tbl')
s_cat = asc.read(in_cat, format='fixed_width_two_line')
# Handle failure if only one source is available and is near edge
# + on 28/02/2017
not_edge = np.where((s_cat['xcentroid'] > 50.0) &
(s_cat['xcentroid'] <= hdr['NAXIS1']-50) &
(s_cat['ycentroid'] > 50.0) &
(s_cat['ycentroid'] <= hdr['NAXIS2']-50))[0]
s_cat = s_cat[not_edge]
# + on 28/02/2017
good = np.where(s_cat['peak'] >= 0.33*max(s_cat['peak']))[0]
s_cat = s_cat[good]
n_bright = np.min([n_stack,len(s_cat)])
bright = range(n_bright)
s_cat = s_cat[bright]
x0 = np.round_(s_cat['xcentroid'])
y0 = np.round_(s_cat['ycentroid'])
im0 = np.zeros( (len(bright), size, size) )
size2d = u.Quantity((size, size), u.pixel)
for ii in range(n_bright):
pos0 = (x0[ii], y0[ii])
cutout = Cutout2D(image_sub, pos0, size2d, mode='partial',
fill_value=np.nan)
# Identify and interpolate over CRs
cutout_cr, crmask = cosmicray_median(cutout.data, thresh=5, rbox=11)
im0[ii] = cutout_cr/np.max(cutout_cr)
out_fits = post_dir0+seqno[ff]+'.fits'
psf_im = np.nanmedian(im0, axis=0)
hdr.set('NBRIGHT', n_bright) # + on 26/02/2017
wind_avg_max(wind_tab0, hdr) # + on 01/03/2017
fits.writeto(out_fits, psf_im, hdr, overwrite=True)
if silent == False: log.info('### End make_postage: '+systime())
#enddef
def psf_contours(files=None, path0=None, out_pdf_plot=None, silent=False,
verbose=True):
'''
Generate contour plots for the MMTCam PSF
Parameters
----------
files : list
List of files
path0 : string
Path to files. If not provided it is assumed that [files] has the full
path name
silent : boolean
Turns off stdout messages. Default: False
verbose : boolean
Turns on additional stdout messages. Default: True
Returns
-------
Notes
-----
Created by Chun Ly, 24 February 2017
- Later mod to handle plotting styles
- Later Mod to include header info in annotation
- Use filled contours with plasma cmap
- Add colorbar
Modified by Chun Ly, 25 February 2017
- Add colorbar for last subplot
- Get FWHM and FWQM from fwhm_fwqm_image()
- Call opt.curve_fit() to fit 2-D Gaussians
- Overlay cyan contours for best 2-D fit
Modified by Chun Ly, 26 February 2017
- Minor stylistic plotting changes
- Call get_mst() to get MST time
- Draw center of best fit
- Call draw_NE_vector() function
Modified by Chun Ly, 26 February 2017
- Use cosmicray_median() to interpolate over CRs
- Use psf_im_cr over psf_im
- Use uniform_filter() to smooth data with a size of 3 pixels
Modified by Chun Ly, 01 March 2017
- Annotate plot with wind data
- Change x and y limit to give more room
'''
if files == None and path0 == None:
log.error('files and path0 keywords not provided')
log.error('Exiting!!!')
return
if silent == False: log.info('### Begin psf_contours: '+systime())
if files == None and path0 != None:
files, seqno = get_files(path0)
else:
if files != None: seqno = get_seqno(files)
post_dir0 = path0 + 'post/'
if out_pdf_plot == None: out_pdf_plot = path0+'psf_contours.pdf'
pp = PdfPages(out_pdf_plot)
ncols, nrows = 3, 3
n_files = len(files)
for ff in xrange(n_files):
psf_file = post_dir0+seqno[ff]+'.fits'
psf_im, h0 = fits.getdata(psf_file, header=True)
# Identify and interpolate over any extraneous CRs | + on 26/02/2017
psf_im_cr, mask = cosmicray_median(psf_im, thresh=5, rbox=11)
psf_im_cr /= np.max(psf_im_cr)
psf_im_sm = uniform_filter(psf_im_cr, size=3) # + on 26/02/2017
if ff == 0:
shape0 = psf_im_cr.shape
x0 = pscale*np.arange(-1*shape0[0]/2.0,shape0[0]/2.0)
y0 = pscale*np.arange(-1*shape0[1]/2.0,shape0[1]/2.0)
if ff % (ncols*nrows) == 0:
fig, ax = plt.subplots(nrows, ncols)
row, col = ff / ncols % nrows, ff % ncols
# Later mod on 24/02/2017, 26/02/2017
cf = ax[row,col].contourf(x0, y0, psf_im_sm, levels=c_levels,
cmap=plt.cm.plasma)
# Mod on 25/02/2017 to include colorbar for last subplot
# Mod on 26/02/2017 to shrink height
if col == ncols-1:
cax = fig.add_axes([0.925, 0.76-0.32*row, 0.01, 0.14])
if ff == n_files-1:
cax = fig.add_axes([0.605, 0.76-0.32*row, 0.01, 0.14])
if col == ncols-1 or ff == n_files-1:
cbar = fig.colorbar(cf, ax=ax[row,col], cax=cax)
cbar.ax.tick_params(labelsize=8)
if row == nrows-1:
ax[row,col].set_xlabel('X [arcsec]')
else:
if ((n_files-1)-ff) > ncols-1:
ax[row,col].set_xticklabels([])
if ff == n_files-1:
for cc in range(ncols): ax[row,cc].set_xlabel('X [arcsec]')
if col == 0:
ax[row,col].set_ylabel('Y [arcsec]')
else: ax[row,col].set_yticklabels([])
# Mod on 26/02/2017
t_label = seqno[ff]+'.'+h0['FILTER']
ax[row,col].annotate(t_label, [0.025,0.975], weight='bold', ha='left',
va='top', xycoords='axes fraction', fontsize=10)
t_nstack = r'N$_{\rm stack}$=%i' % h0['NBRIGHT']
ax[row,col].annotate(t_nstack, [0.975,0.975], weight='bold', ha='right',
va='top', xycoords='axes fraction', fontsize=10)
# Compute image quality | + on 25/02/2017
f_annot = 'UTC='+h0['UT']+' MST='+get_mst(h0)+'\n' # + on 26/02/2017
fwhm0, fwqm0 = fwhm_fwqm_size(psf_im_cr, pscale)
f_annot += 'Area: FWHM=%.2f", FWQM=%.2f"\n' % (fwhm0, fwqm0)
sigG = fwhm0/f_s/pscale.to(u.arcsec).value
ini_guess = (1.0, 25, 25, sigG, sigG, 0.0, 0.0)
gx = np.linspace(0,shape0[0]-1,shape0[0])
gy = np.linspace(0,shape0[1]-1,shape0[1])
gx, gy = np.meshgrid(gx, gy)
psf_im_re = psf_im_cr.reshape(shape0[0]*shape0[1])
popt, pcov = opt.curve_fit(gauss2d, (gx, gy), psf_im_re, p0=ini_guess)
FWHMx = popt[3] * f_s * pscale.to(u.arcsec).value
FWHMy = popt[4] * f_s * pscale.to(u.arcsec).value
f_annot += r'2DFit: FW$_1$=%.2f", FW$_2$=%.2f", ' % (FWHMx,FWHMy)
f_annot += r'$\theta$=%.2f' % np.degrees(popt[5]) + '\n'
# + on 01/03/2017
f_annot += 'Y1: avg=%.1f, max=%.1f, dir=%.1f\n' % (h0['Y1_AVG'],h0['Y1_MAX'],
h0['Y1_DIR'])
f_annot += 'Y2: avg=%.1f, max=%.1f, dir=%.1f' % (h0['Y2_AVG'],h0['Y2_MAX'],
h0['Y2_DIR'])
ax[row,col].set_xlim([-5,5])
ax[row,col].set_ylim([-5,5])
# Mod on 27/02/2017 to have a fill color
ax[row,col].annotate(f_annot, [0.025,0.915], xycoords='axes fraction',
ha='left', va='top', fontsize=8, zorder=10,
bbox=bbox_props)