-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathyolo.py
151 lines (130 loc) · 4.36 KB
/
yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import cv2
import numpy as np
import argparse
import time
parser = argparse.ArgumentParser()
parser.add_argument('--webcam', help="True/False", default=False)
parser.add_argument('--play_video', help="Tue/False", default=False)
parser.add_argument('--image', help="Tue/False", default=False)
parser.add_argument('--video_path', help="Path of video file", default="videos/fire1.mp4")
parser.add_argument('--image_path', help="Path of image to detect objects", default="Images/bicycle.jpg")
parser.add_argument('--verbose', help="To print statements", default=True)
args = parser.parse_args()
#Load yolo
def load_yolo():
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
classes = []
with open("obj.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
layers_names = net.getLayerNames()
output_layers = [layers_names[i[0]-1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
return net, classes, colors, output_layers
def load_image(img_path):
# image loading
img = cv2.imread(img_path)
img = cv2.resize(img, None, fx=0.4, fy=0.4)
height, width, channels = img.shape
return img, height, width, channels
def start_webcam():
cap = cv2.VideoCapture(0)
return cap
def display_blob(blob):
'''
Three images each for RED, GREEN, BLUE channel
'''
for b in blob:
for n, imgb in enumerate(b):
cv2.imshow(str(n), imgb)
def detect_objects(img, net, outputLayers):
blob = cv2.dnn.blobFromImage(img, scalefactor=0.00392, size=(320, 320), mean=(0, 0, 0), swapRB=True, crop=False)
net.setInput(blob)
outputs = net.forward(outputLayers)
return blob, outputs
def get_box_dimensions(outputs, height, width):
boxes = []
confs = []
class_ids = []
for output in outputs:
for detect in output:
scores = detect[5:]
class_id = np.argmax(scores)
conf = scores[class_id]
if conf > 0.3:
center_x = int(detect[0] * width)
center_y = int(detect[1] * height)
w = int(detect[2] * width)
h = int(detect[3] * height)
x = int(center_x - w/2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confs.append(float(conf))
class_ids.append(class_id)
return boxes, confs, class_ids
def draw_labels(boxes, confs, colors, class_ids, classes, img):
indexes = cv2.dnn.NMSBoxes(boxes, confs, 0.5, 0.4)
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
color = colors[i]
cv2.rectangle(img, (x,y), (x+w, y+h), color, 2)
cv2.putText(img, label, (x, y - 5), font, 1, color, 1)
img=cv2.resize(img, (800,600))
cv2.imshow("Image", img)
def image_detect(img_path):
model, classes, colors, output_layers = load_yolo()
image, height, width, channels = load_image(img_path)
blob, outputs = detect_objects(image, model, output_layers)
boxes, confs, class_ids = get_box_dimensions(outputs, height, width)
draw_labels(boxes, confs, colors, class_ids, classes, image)
while True:
key = cv2.waitKey(1)
if key == 27:
break
def webcam_detect():
model, classes, colors, output_layers = load_yolo()
cap = start_webcam()
while True:
_, frame = cap.read()
height, width, channels = frame.shape
blob, outputs = detect_objects(frame, model, output_layers)
boxes, confs, class_ids = get_box_dimensions(outputs, height, width)
draw_labels(boxes, confs, colors, class_ids, classes, frame)
key = cv2.waitKey(1)
if key == 27:
break
cap.release()
def start_video(video_path):
model, classes, colors, output_layers = load_yolo()
cap = cv2.VideoCapture(video_path)
while True:
_, frame = cap.read()
height, width, channels = frame.shape
blob, outputs = detect_objects(frame, model, output_layers)
boxes, confs, class_ids = get_box_dimensions(outputs, height, width)
draw_labels(boxes, confs, colors, class_ids, classes, frame)
key = cv2.waitKey(1)
if cv2.waitKey(1) & 0xFF ==ord('q'):
break
cap.release()
if __name__ == '__main__':
webcam = args.webcam
video_play = args.play_video
image = args.image
if webcam:
if args.verbose:
print('---- Starting Web Cam object detection ----')
webcam_detect()
if video_play:
video_path = args.video_path
if args.verbose:
print('Opening '+video_path+" .... ")
start_video(video_path)
if image:
image_path = args.image_path
if args.verbose:
print("Opening "+image_path+" .... ")
image_detect(image_path)
cv2.destroyAllWindows()