-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBitangentNoise.glsl
170 lines (146 loc) · 6.04 KB
/
BitangentNoise.glsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// --------------------------------------------------------------------
// Optimized implementation of 3D/4D bitangent noise.
// Based on stegu's simplex noise: https://github.com/stegu/webgl-noise.
// Contact : atyuwen@gmail.com
// Author : Yuwen Wu (https://atyuwen.github.io/)
// License : Distributed under the MIT License.
// --------------------------------------------------------------------
// Permuted congruential generator (only top 16 bits are well shuffled).
// References: 1. Mark Jarzynski and Marc Olano, "Hash Functions for GPU Rendering".
// 2. UnrealEngine/Random.ush. https://github.com/EpicGames/UnrealEngine
uvec2 _pcg3d16(uvec3 p)
{
uvec3 v = p * 1664525u + 1013904223u;
v.x += v.y*v.z; v.y += v.z*v.x; v.z += v.x*v.y;
v.x += v.y*v.z; v.y += v.z*v.x;
return v.xy;
}
uvec2 _pcg4d16(uvec4 p)
{
uvec4 v = p * 1664525u + 1013904223u;
v.x += v.y*v.w; v.y += v.z*v.x; v.z += v.x*v.y; v.w += v.y*v.z;
v.x += v.y*v.w; v.y += v.z*v.x;
return v.xy;
}
// Get random gradient from hash value.
vec3 _gradient3d(uint hash)
{
vec3 g = vec3(uvec3(hash) & uvec3(0x80000, 0x40000, 0x20000));
return g * (1.0 / vec3(0x40000, 0x20000, 0x10000)) - 1.0;
}
vec4 _gradient4d(uint hash)
{
vec4 g = vec4(uvec4(hash) & uvec4(0x80000, 0x40000, 0x20000, 0x10000));
return g * (1.0 / vec4(0x40000, 0x20000, 0x10000, 0x8000)) - 1.0;
}
// Optimized 3D Bitangent Noise. Approximately 113 instruction slots used.
// Assume p is in the range [-32768, 32767].
vec3 BitangentNoise3D(vec3 p)
{
const vec2 C = vec2(1.0 / 6.0, 1.0 / 3.0);
const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);
// First corner
vec3 i = floor(p + dot(p, C.yyy));
vec3 x0 = p - i + dot(i, C.xxx);
// Other corners
vec3 g = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g;
vec3 i1 = min(g.xyz, l.zxy);
vec3 i2 = max(g.xyz, l.zxy);
// x0 = x0 - 0.0 + 0.0 * C.xxx;
// x1 = x0 - i1 + 1.0 * C.xxx;
// x2 = x0 - i2 + 2.0 * C.xxx;
// x3 = x0 - 1.0 + 3.0 * C.xxx;
vec3 x1 = x0 - i1 + C.xxx;
vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y
i = i + 32768.5;
uvec2 hash0 = _pcg3d16(uvec3(i));
uvec2 hash1 = _pcg3d16(uvec3(i + i1));
uvec2 hash2 = _pcg3d16(uvec3(i + i2));
uvec2 hash3 = _pcg3d16(uvec3(i + 1.0 ));
vec3 p00 = _gradient3d(hash0.x); vec3 p01 = _gradient3d(hash0.y);
vec3 p10 = _gradient3d(hash1.x); vec3 p11 = _gradient3d(hash1.y);
vec3 p20 = _gradient3d(hash2.x); vec3 p21 = _gradient3d(hash2.y);
vec3 p30 = _gradient3d(hash3.x); vec3 p31 = _gradient3d(hash3.y);
// Calculate noise gradients.
vec4 m = clamp(0.5 - vec4(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), 0.0, 1.0);
vec4 mt = m * m;
vec4 m4 = mt * mt;
mt = mt * m;
vec4 pdotx = vec4(dot(p00, x0), dot(p10, x1), dot(p20, x2), dot(p30, x3));
vec4 temp = mt * pdotx;
vec3 gradient0 = -8.0 * (temp.x * x0 + temp.y * x1 + temp.z * x2 + temp.w * x3);
gradient0 += m4.x * p00 + m4.y * p10 + m4.z * p20 + m4.w * p30;
pdotx = vec4(dot(p01, x0), dot(p11, x1), dot(p21, x2), dot(p31, x3));
temp = mt * pdotx;
vec3 gradient1 = -8.0 * (temp.x * x0 + temp.y * x1 + temp.z * x2 + temp.w * x3);
gradient1 += m4.x * p01 + m4.y * p11 + m4.z * p21 + m4.w * p31;
// The cross products of two gradients is divergence free.
return cross(gradient0, gradient1) * 3918.76;
}
// 4D Bitangent noise. Approximately 163 instruction slots used.
// Assume p is in the range [-32768, 32767].
vec3 BitangentNoise4D(vec4 p)
{
const vec4 F4 = vec4( 0.309016994374947451 );
const vec4 C = vec4( 0.138196601125011, // (5 - sqrt(5))/20 G4
0.276393202250021, // 2 * G4
0.414589803375032, // 3 * G4
-0.447213595499958 ); // -1 + 4 * G4
// First corner
vec4 i = floor(p + dot(p, F4) );
vec4 x0 = p - i + dot(i, C.xxxx);
// Other corners
// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
vec4 i0;
vec3 isX = step( x0.yzw, x0.xxx );
vec3 isYZ = step( x0.zww, x0.yyz );
// i0.x = dot( isX, vec3( 1.0 ) );
i0.x = isX.x + isX.y + isX.z;
i0.yzw = 1.0 - isX;
// i0.y += dot( isYZ.xy, vec2( 1.0 ) );
i0.y += isYZ.x + isYZ.y;
i0.zw += 1.0 - isYZ.xy;
i0.z += isYZ.z;
i0.w += 1.0 - isYZ.z;
// i0 now contains the unique values 0,1,2,3 in each channel
vec4 i3 = clamp( i0, 0.0, 1.0 );
vec4 i2 = clamp( i0 - 1.0, 0.0, 1.0 );
vec4 i1 = clamp( i0 - 2.0, 0.0, 1.0 );
// x0 = x0 - 0.0 + 0.0 * C.xxxx
// x1 = x0 - i1 + 1.0 * C.xxxx
// x2 = x0 - i2 + 2.0 * C.xxxx
// x3 = x0 - i3 + 3.0 * C.xxxx
// x4 = x0 - 1.0 + 4.0 * C.xxxx
vec4 x1 = x0 - i1 + C.xxxx;
vec4 x2 = x0 - i2 + C.yyyy;
vec4 x3 = x0 - i3 + C.zzzz;
vec4 x4 = x0 + C.wwww;
i = i + 32768.5;
uvec2 hash0 = _pcg4d16(uvec4(i));
uvec2 hash1 = _pcg4d16(uvec4(i + i1));
uvec2 hash2 = _pcg4d16(uvec4(i + i2));
uvec2 hash3 = _pcg4d16(uvec4(i + i3));
uvec2 hash4 = _pcg4d16(uvec4(i + 1.0 ));
vec4 p00 = _gradient4d(hash0.x); vec4 p01 = _gradient4d(hash0.y);
vec4 p10 = _gradient4d(hash1.x); vec4 p11 = _gradient4d(hash1.y);
vec4 p20 = _gradient4d(hash2.x); vec4 p21 = _gradient4d(hash2.y);
vec4 p30 = _gradient4d(hash3.x); vec4 p31 = _gradient4d(hash3.y);
vec4 p40 = _gradient4d(hash4.x); vec4 p41 = _gradient4d(hash4.y);
// Calculate noise gradients.
vec3 m0 = clamp(0.6 - vec3(dot(x0, x0), dot(x1, x1), dot(x2, x2)), 0.0, 1.0);
vec2 m1 = clamp(0.6 - vec2(dot(x3, x3), dot(x4, x4) ), 0.0, 1.0);
vec3 m02 = m0 * m0; vec3 m03 = m02 * m0;
vec2 m12 = m1 * m1; vec2 m13 = m12 * m1;
vec3 temp0 = m02 * vec3(dot(p00, x0), dot(p10, x1), dot(p20, x2));
vec2 temp1 = m12 * vec2(dot(p30, x3), dot(p40, x4));
vec4 grad0 = -6.0 * (temp0.x * x0 + temp0.y * x1 + temp0.z * x2 + temp1.x * x3 + temp1.y * x4);
grad0 += m03.x * p00 + m03.y * p10 + m03.z * p20 + m13.x * p30 + m13.y * p40;
temp0 = m02 * vec3(dot(p01, x0), dot(p11, x1), dot(p21, x2));
temp1 = m12 * vec2(dot(p31, x3), dot(p41, x4));
vec4 grad1 = -6.0 * (temp0.x * x0 + temp0.y * x1 + temp0.z * x2 + temp1.x * x3 + temp1.y * x4);
grad1 += m03.x * p01 + m03.y * p11 + m03.z * p21 + m13.x * p31 + m13.y * p41;
// The cross products of two gradients is divergence free.
return cross(grad0.xyz, grad1.xyz) * 81.0;
}