-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathaudio_managing.py
209 lines (181 loc) · 7.1 KB
/
audio_managing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from scipy.io import wavfile
from scipy.fftpack import dct, idct, fft, fftfreq, ifft
import subprocess as sp
import platform
from utils import makeFileName, withoutExtensionFile
import os
import numpy as np
import math
import matplotlib.pyplot as plt
import pywt
import sys
AUDIO_PATH = 0
SAMPLERATE = 1
AUDIO_DATA = 2
WAVELETS_LEVEL = 2
DWT_SET = set({"haar",
"bior1.1", "bior1.3", "bior1.5",
"bior2.2", "bior2.4", "bior2.6", "bior2.8",
"bior3.1", "bior3.3", "bior3.5", "bior3.7", "bior3.9",
"bior4.4",
"bior5.5",
"bior6.8",
"coif1", "coif2", "coif3", "coif4", "coif5", "coif6", "coif7", "cdb3oif8", "coif9", "coif10", "coif11", "coif12", "coif13", "coif14", "coif15", "coif16", "coif17",
"db1", "db2", "db3", "db4", "db5", "db6", "db7", "db8", "db9", "db10", "db11", "db12", "db13", "db14", "db15", "db16", "db17", "db18", "db19", "db20", "db21", "db22", "db23", "db24", "db25", "db26", "db27", "db28", "db29", "db30", "db31", "db32", "db33", "db34", "db35", "db36", "db37", "db38",
"dmey",
"rbio1.1", "rbio1.3", "rbio1.5",
"rbio2.2", "rbio2.4", "rbio2.6", "rbio2.8",
"rbio3.1", "rbio3.3", "rbio3.5", "rbio3.7", "rbio3.9",
"rbio4.4",
"rbio5.5",
"rbio6.8",
"sym2", "sym3", "sym4", "sym5", "sym6", "sym7", "sym8", "sym9", "sym10", "sym11", "sym12", "sym13", "sym14", "sym15", "sym16", "sym17", "sym18", "sym19", "sym20"})
#Read the file audio.wav from path
def readWavFile(path = ""):
if path == "":
sys.exit("READ WAV FILE must have valid path!")
samplerate, data = wavfile.read(path)
tupleWav = (path, samplerate, data)
return tupleWav
#Print some information about file audio
def printMetadata(entry):
print("Path: {}"\
.format(entry[AUDIO_PATH]))
print("\tsamplerate: {}"\
.format(entry[SAMPLERATE]))
print("\t#samples: {}"\
.format(entry[AUDIO_DATA].shape))
#Check the number of channels of audio file
def isMono(dataAudio):
return (True if len(dataAudio.shape) == 1 else False)
#Normalize data signal in int16 suitable for wav library
def normalizeForWav(data):
return np.int16(data.real)
#Save processed file audio with wav format
def saveWavFile(path, samplerate, signal, prefix):
path = makeFileName(prefix, path)
wavfile.write(path, samplerate, signal)
#Join audio channels to only one
def joinAudioChannels(path):
outPath = makeFileName("mono", path)
if platform.system() == "Linux":
cmdffmpeg_L = "ffmpeg -y -i {} -ac 1 -f wav {}"\
.format(path, outPath)
os.system(cmdffmpeg_L)
elif platform.system() == "Windows":
cmdffmpeg_W = "./ffmpeg/bin/ffmpeg.exe -y -i {} -ac 1 -f wav {}"\
.format(path, outPath)
sp.call(cmdffmpeg_W)
tupleMono = readWavFile(outPath)
return tupleMono
#Return array of data audio
def audioData(audio):
return audio[AUDIO_DATA]
#Divide audio in frames
def audioToFrame(audio, len):
numFrames = math.ceil(audio.shape[0]/len)
frames = list()
for i in range(numFrames):
frames.append(audio[i*len : (i*len)+len])
return np.asarray(frames)
#Join frames to single array
def frameToAudio(frames):
audio = []
for i in range(len(frames)):
audio = np.concatenate((audio,frames[i]))
return audio
#Plot the waveform of input audio file
def waveform(entry):
plt.figure()
plt.plot(entry[AUDIO_DATA][:1000])
plt.title("Waveform: {}"\
.format(entry[AUDIO_PATH]))
nameFile = withoutExtensionFile(entry[AUDIO_PATH], "1000")
plt.savefig(nameFile)
plt.show()
#Get the list of all wavelets
def getWaveletsFamilies():
return pywt.wavelist()
#Get the list of all signal extension modes
def getWaveletsModes():
return pywt.Modes.modes
def filterWaveletsFamilies(families):
DWTFamilies = list(filter(lambda w: w in DWT_SET, families))
return DWTFamilies
#Multilevel decomposition DWT
def DWT(data, wavelet, mode, level):
coeffs = pywt.wavedec(data, wavelet, mode, level)
#cA2, cD2, cD1 = coeffs
return coeffs
#Multilevel recomposition DWT
def iDWT(coeffs, wavelet, mode):
data = pywt.waverec(coeffs, wavelet, mode)
return data
#Get DCT of data
def DCT(data):
dctData = dct(data, type = 3, norm = "ortho")
return dctData
#Get inverse of DCT of data
def iDCT(data):
idctData = idct(data, type = 3, norm = "ortho")
return idctData
#Get FFT of data
def FFT(tupleAudio):
datafft = fft(tupleAudio[AUDIO_DATA])
fftabs = abs(datafft)
ttl = list(tupleAudio[AUDIO_DATA].shape) #to extract tuple's values as int first it converts into list
shape = ttl.pop() #and then it is popped the single element of list
freqs = fftfreq(shape, 1./tupleAudio[SAMPLERATE])
t = (fftabs, freqs, datafft)
return t
#Get the inverse of FFT
def iFFT(data):
return ifft(data)
def indexFrequency(freqsFFT, samplerate, frequency):
return int((frequency/samplerate)*freqsFFT.size)
'''
TESTING
'''
if __name__ == "__main__":
readWavFile()
tupleAudio = readWavFile("piano.wav")
printMetadata(tupleAudio)
print("Is the audio mono? ", isMono(tupleAudio[AUDIO_DATA])) #false
saveWavFile(tupleAudio[AUDIO_PATH], tupleAudio[SAMPLERATE], tupleAudio[AUDIO_DATA], "watermarked")
tupleAudio = joinAudioChannels(tupleAudio[AUDIO_PATH])
printMetadata(tupleAudio)
print("Is the audio mono? ", isMono(tupleAudio[AUDIO_DATA])) #true
frames = audioToFrame(tupleAudio[AUDIO_DATA],len=1000)
print("Number of frames:", frames.shape) #303 ca
waveform(tupleAudio)
waveletsFamilies = getWaveletsFamilies()
DWTFamilies = filterWaveletsFamilies(waveletsFamilies)
print("DWT Families: ", DWTFamilies)
print("len DWT Families = ", len(DWTFamilies))
waveletsModes = getWaveletsModes()
coeffs = DWT(tupleAudio[AUDIO_DATA], DWTFamilies[DWTFamilies.index("haar")], waveletsModes[waveletsModes.index("symmetric")], WAVELETS_LEVEL)
print("wavelets coeffs: ", coeffs)
cA2, cD2, cD1 = coeffs
print("cA2: ", cA2, "\ncD2: ", cD2, "\ncD1: ", cD1)
#cA2 = abs(cA2)
#cD2 = abs(cD2)
#scD1 = abs(cD1)
coeffs = cA2, cD2, cD1
data = iDWT(coeffs, waveletsFamilies[0], waveletsModes[0])
print("iDWT data: ", data)
data = normalizeForWav(data)
print("iDWT == data audio? ", data == tupleAudio[AUDIO_DATA])
saveWavFile(tupleAudio[AUDIO_PATH], tupleAudio[SAMPLERATE], data, "dwt")
dctCoeff = DCT(cA2)
print("DCT Coeff: ", dctCoeff)
idctCoeff = iDCT(dctCoeff)
print("iDCT Coeff: ", idctCoeff)
print("cA2 == idctCoeff? ", cA2 == idctCoeff)
coeffs = idctCoeff, cD2, cD1
data = iDWT(coeffs, waveletsFamilies[0], waveletsModes[0])
data = normalizeForWav(data)
print("iDWT + iDCT == data audio? ", data == tupleAudio[AUDIO_DATA])
saveWavFile(tupleAudio[AUDIO_PATH], tupleAudio[SAMPLERATE], data, "dwt-dct")
FFTtuple = FFT(tupleAudio)
data = normalizeForWav(iFFT(FFTtuple[2]))
saveWavFile(tupleAudio[AUDIO_PATH], tupleAudio[SAMPLERATE], data, "fft")