-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
256 lines (208 loc) · 7.86 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from urllib.parse import urlparse
import logging
import polars as pl
import pyarrow.parquet as pq
import pyarrow.dataset as ds
import math, os, time
from typing import Iterator
import connectorx as cx
GB = 1000000000
logging.basicConfig(
level=logging.INFO,
format="[%(asctime)s] {%(pathname)s:%(lineno)d} %(levelname)s - %(message)s",
datefmt="%H:%M:%S",
)
def mustEnv(env_name, default=None) -> str:
env_var = os.getenv(env_name, default)
if env_var is None:
logging.fatal(f"missing env variable {env_name}")
return str(env_var)
TABLE = mustEnv("TABLE")
SCHEMA = mustEnv("SCHEMA", "public")
DATABASE_URL = mustEnv("DATABASE_URL")
WRITE_PATH = mustEnv("WRITE_PATH")
COMPRESSION = mustEnv("COMPRESSION", "zstd") # snappy is another good option
SPLIT_OUTPUT = mustEnv("SPLIT_OUTPUT", False)
QUERY_OVERWRITE = mustEnv("QUERY_OVERWRITE", "")
WRITE_PARTITIONED = mustEnv("WRITE_PARTITIONED", "")
PARTITION_COLUMN = mustEnv("PARTITION_COLUMN", "")
GB_IN_SPLIT = mustEnv(
"GB_IN_SPLIT", "1.0"
) # for the partitioned reading with "PARTITION_COLUMN"
try:
GB_IN_SPLIT = float(GB_IN_SPLIT)
except:
GB_IN_SPLIT = 1.0
# Athena does not support ns timestamps. This function will find all ns timestamps and cast them to ms
def date_to_ms(df: pl.LazyFrame) -> pl.LazyFrame:
for ix, col_type in enumerate(df.dtypes):
if col_type == pl.Datetime:
logging.info(
f"Going to cast column {df.columns[ix]} from {col_type} to datetime[ms]"
)
df = df.with_columns(
[pl.col(df.columns[ix]).dt.cast_time_unit("ms").alias(df.columns[ix])]
)
return df
query_prefix = """-- polars extractor query
"""
def read_sql(
sql: list[str] | str,
connection_uri: str,
partition_on: str | None = None,
partition_range: tuple[int, int] | None = None,
partition_num: int | None = None,
) -> pl.DataFrame:
logging.info(f"Running query: {sql}")
arrow_table = cx.read_sql(
query=query_prefix + sql,
conn=connection_uri,
return_type="arrow2",
partition_on=partition_on,
partition_range=partition_range,
partition_num=partition_num,
protocol="binary",
)
return pl.from_arrow(arrow_table)
# read_plain is the simplest way to read data. This can be used on most tables.
# the important part: the entire table will be in memory after reading.
# if your table is too big, use read_partitioned_iterator
def read_plain(conn) -> pl.LazyFrame:
query = QUERY_OVERWRITE
if QUERY_OVERWRITE == "":
query = f"select * from {SCHEMA}.{TABLE}"
logging.info(f"READING DATASET FROM DATABASE FROM TABLE {TABLE}")
df = read_sql(query, conn).lazy()
return df
# this method uses partitioning to make the extraction faster.
# The usefulness of this may vary.
def read_partitioned_connectorx(conn) -> pl.LazyFrame:
query = QUERY_OVERWRITE
if QUERY_OVERWRITE == "":
query = f"select * from {SCHEMA}.{TABLE}"
logging.info(f"READING DATASET FROM DATABASE WITH PARTITIONS FROM TABLE {TABLE}")
df = read_sql(query, conn, partition_on=PARTITION_COLUMN, partition_num=None).lazy()
return df
# read_partitioned_iterator is for tables that are too big to fit in memory.
# Instead of reading the entire table, it relies on using a column as a cursor
def read_partitioned_iterator(conn) -> Iterator[pl.LazyFrame]:
if PARTITION_COLUMN == "":
logging.error("PARTITION_COLUMN EMPTY.")
return
# ranges query
query_min_max = f"""select min({PARTITION_COLUMN}) as min_id,
max({PARTITION_COLUMN}) as max_id,
pg_total_relation_size('{SCHEMA}.{TABLE}') as size
from {SCHEMA}.{TABLE}"""
df_min_max = read_sql(query_min_max, conn).to_dicts()[0]
parts = math.ceil(df_min_max["size"] / (GB_IN_SPLIT * GB))
logging.info(f"Will read database in {parts} parts.")
logging.info(f"Total database size {int(round(df_min_max.get('size') / GB))} GB")
# this will create a Generator. It is a special type of iterator
# where its contents are only retrieved when iterated.
# In this case, read_sql will be called only when needed.
# and its a inline function for no good reason
def query_generator_ranges(start, stop, parts) -> Iterator[pl.LazyFrame]:
step = math.ceil((stop - start) / parts)
query = QUERY_OVERWRITE
if QUERY_OVERWRITE == "":
query = f"select * from {SCHEMA}.{TABLE}"
return (
(
read_sql(
f"""select sb.* from ({query}) sb
where {PARTITION_COLUMN} >= {start + step * i}
and {PARTITION_COLUMN} < {start + step * (i + 1)}""",
conn,
).lazy()
)
for i in range(0, parts)
)
return query_generator_ranges(df_min_max["min_id"], df_min_max["max_id"], parts)
# this is useful when you have a column that can be used as a partition when running
# queries in your datalake "year" is a common one
def write_partitioned_basic(df: pl.LazyFrame, write_path: str):
logging.info(
f"Writing with partitions on column {WRITE_PARTITIONED} in prefix: {write_path}"
)
file_options = ds.ParquetFileFormat().make_write_options(compression=COMPRESSION)
pq.write_to_dataset(
df.collect().to_arrow(),
root_path=write_path,
format="parquet",
file_options=file_options,
compression=COMPRESSION,
partition_cols=[WRITE_PARTITIONED],
existing_data_behavior="delete_matching",
)
# writes a single file with the output
def write_plain(df: pl.LazyFrame, write_path: str):
logging.info(f"Writing in one file in {write_path}")
df: pl.DataFrame = df.collect()
if len(df) == 0:
logging.warning(f"Empty dataframe {write_path}")
return
try:
df.write_parquet(write_path, compression=COMPRESSION)
except Exception as e:
logging.error(e, "using PyArrow")
pq.write_table(
df.to_arrow(),
where=write_path,
compression=COMPRESSION,
)
# writes multiple files instead of a single one
def write_multiple_files(df: pl.LazyFrame, write_path: str):
file_options = ds.ParquetFileFormat().make_write_options(compression=COMPRESSION)
logging.info(f"Writing in multiple files in {write_path}")
ds.write_dataset(
df.collect().to_arrow(),
base_dir=write_path,
format="parquet",
file_options=file_options,
existing_data_behavior="delete_matching",
)
def main():
urlparse(DATABASE_URL)
conn = DATABASE_URL
df: pl.LazyFrame
if PARTITION_COLUMN:
dfs = read_partitioned_iterator(conn)
part = 0
result_files = []
for df in dfs:
df = date_to_ms(df)
# Check
write_path = f"{WRITE_PATH}-part-{part}.parquet"
write_plain(df, write_path)
del df # lets help the GC and tell it to delete the dataframe
result_files.append(write_path)
part += 1
logging.info(f"Write successful. Files created: {result_files}")
return
else:
df = read_plain(conn)
df = date_to_ms(df)
if WRITE_PARTITIONED:
write_partitioned_basic(df, WRITE_PATH)
elif SPLIT_OUTPUT:
write_multiple_files(df, WRITE_PATH)
else:
write_plain(df, WRITE_PATH + ".parquet")
logging.info("Write successful")
def elapsed_time(start):
end = time.time()
dur = end - start
logging.info(f"Took {dur} seconds")
if __name__ == "__main__":
start = time.time()
try:
main()
elapsed_time(start)
logging.info("SUCCESS")
exit(0)
except Exception as e:
logging.error("ERROR: exception when trying to run main")
elapsed_time(start)
logging.error(e)
raise (e)