-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrnn_classifier.py
108 lines (92 loc) · 4.04 KB
/
rnn_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import tensorflow as tf
import numpy as np
import os.path
model_save_path = 'tmp/model.ckpt'
learning_rate = 0.003
n_input = 27 # alphabet and space
n_hidden = 128 # hidden layer features
max_sequence_length = 11
alphabet = 'abcdefghijklmnopqrstuvwxyz '
ethnicities = ['chinese', 'japanese']#, 'vietnamese']#, 'korean']
n_classes = len(ethnicities)
name_strings = []
ethnicity_strings = []
def __main__():
str_list = []
names_list = []
ethnicity_list = []
with open('names.csv', 'r') as csv:
for line in csv:
l = [s.strip() for s in line.split(',')]
if(l[1] in ethnicities):
name_strings.append(l[0])
ethnicity_strings.append(l[1])
names_list.append(name_one_hot(l[0], max_sequence_length))
ethnicity_list.append(ethnicity_one_hot(l[1]))
rng_state = np.random.get_state() # use the same random number generator state
np.random.shuffle(names_list) # when shuffling the two lists
np.random.set_state(rng_state) # they are effectively shuffled in parallel so that inputs still correspond to outputs after shuffling
np.random.shuffle(ethnicity_list)
size = len(names_list)
training_X = np.array(names_list[:size*2/3])
training_y = np.array(ethnicity_list[:size*2/3])
testing_X = np.array(names_list[size*2/3:])
testing_y = np.array(ethnicity_list[size*2/3:])
X = tf.placeholder(tf.float32, [None, max_sequence_length, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
out_weights = weight_variable([n_hidden, n_classes])
out_biases = bias_variable([n_classes])
rnn_cell = tf.contrib.rnn.BasicRNNCell(n_hidden)
outputs, states = tf.nn.dynamic_rnn(rnn_cell, X, dtype=tf.float32)
y_ = tf.matmul(outputs[:,-1,:], out_weights) + out_biases # predict y based on final rnn output
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_, labels=y))
train_step = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
correct_prediction = tf.equal(tf.argmax(y_,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
init = tf.global_variables_initializer()
saver = tf.train.Saver()
sess = tf.InteractiveSession()
sess.run(init)
if not os.path.isfile(model_save_path+'.index'):
for _ in range(200):
sess.run(train_step, feed_dict={X: training_X, y: training_y})
if _%10 == 0:
train_accuracy = accuracy.eval(feed_dict={
X:training_X, y:training_y})
print("step %d, training accuracy %g"%(_, train_accuracy))
test_accuracy = accuracy.eval(feed_dict={X:testing_X, y:testing_y})
print("testing accuracy", test_accuracy)
saver.save(sess, model_save_path)
print("Model saved in file: %s" % model_save_path)
'''for i in range(len(name_strings)):
name = name_strings[i]
ethnicity = ethnicity_strings[i]
if not tf.equal(tf.argmax(y[0], axis=0), tf.argmax(y_[0], axis=0)).eval(feed_dict={X: np.expand_dims(name_one_hot(name, 11), axis=0), y: np.expand_dims(ethnicity_one_hot(ethnicity), axis=0)}):
print('incorrect', name, ethnicity)'''
while True:
input_name = raw_input('Enter a last name (max 11 letters):')
while len(input_name) > 11 or len(input_name) == 0:
input_name = raw_input('Invalid input. Enter a last name (max 11 letters):')
input_name = input_name.lower()
print(ethnicities[np.argmax(y_.eval(feed_dict={X: np.expand_dims(name_one_hot(input_name, 11), axis=0)}))])
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def name_one_hot(name, max_sequence_length):
result = []
for char in name:
v = np.zeros(27, dtype=np.int) # count space as a character
v[alphabet.index(char)] = 1
result.append(v)
while len(result) < max_sequence_length:
result.append(np.zeros(27, dtype=np.int))
result = np.array(result)
return result
def ethnicity_one_hot(ethnicity):
v = np.zeros(n_classes, dtype=np.int)
v[ethnicities.index(ethnicity)] = 1
return v
__main__()