-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsensor.gyroscope.3dof.l3g4200d.spin2
672 lines (569 loc) · 22 KB
/
sensor.gyroscope.3dof.l3g4200d.spin2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
{
----------------------------------------------------------------------------------------------------
Filename: sensor.gyroscope.3dof.l3g4200d.spin2
Description: Driver for the ST L3G4200D 3-axis gyroscope
Author: Jesse Burt
Started: May 9, 2021
Updated: Jan 13, 2025
Copyright (c) 2025 - See end of file for terms of use.
----------------------------------------------------------------------------------------------------
}
#include "sensor.gyroscope.common.spin2h" ' use code common to all gyroscope drivers
CON
{ default I/O configuration - these can be overridden by the parent object }
' I2C
SCL = 28
SDA = 29
I2C_FREQ = 1_000_000
I2C_ADDR = 0
' SPI
CS = 0
SCK = 1
MOSI = 2
MISO = 3
SPI_FREQ = 1_000_000
{ High-pass filter modes }
#0, HPF_NORMAL_RES, HPF_REF, HPF_NORMAL, HPF_AUTO_RES
{ Operation modes }
#0, POWERDOWN, SLEEP, NORMAL
{ Interrupt pin active states }
#0, INTLVL_HIGH, INTLVL_LOW
{ Interrupt pin output type }
#0, INT_PP, INT_OD
{ Gyro data byte order }
#0, LSBFIRST, MSBFIRST
{ Axis-specific symbols }
#0, X_AXIS, Y_AXIS, Z_AXIS
{ Indicate to user apps how many Degrees of Freedom each sub-sensor has }
{ (also imply whether or not it has a particular sensor) }
ACCEL_DOF = 0
GYRO_DOF = 3
MAG_DOF = 0
BARO_DOF = 0
DOF = ACCEL_DOF + GYRO_DOF + MAG_DOF + BARO_DOF
' Scales and data rates used during calibration/bias/offset process
CAL_XL_SCL = 0
CAL_G_SCL = 250
CAL_M_SCL = 0
CAL_XL_DR = 0
CAL_G_DR = 200
CAL_M_DR = 0
{ SPI transaction bits }
SPI_R = 1 << 7 ' read transaction
#ifdef L3G4200D_SPI
MS = 1 << 6 ' auto address increment
#else
#define L3G4200D_I2C
MS = 1 << 7 ' auto address increment
#endif
{ I2C settings }
SLAVE_WR = core.SLAVE_ADDR
SLAVE_RD = core.SLAVE_ADDR|1
DEF_SCL = 0
DEF_SDA = 1
DEF_HZ = 100_000
DEF_ADDR = 0
I2C_MAX_FREQ = core.I2C_MAX_FREQ
VAR
long _CS
byte _addr_bits
OBJ
{ SPI? }
#ifdef L3G4200D_SPI
spi: "com.spi.10mhz" ' SPI engine
#else
{ no, not SPI - default to I2C }
#define L3G4200D_I2C
i2c: "com.i2c" ' I2C engine
#endif
core: "core.con.l3g4200d" ' HW-specific constants
PUB null()
' This is not a top-level object
#ifdef L3G4200D_SPI
PUB start(): status
' Start using "standard" Propeller I2C pins, and 100kHz bus speed
return startx(CS, SCK, MOSI, MISO, SPI_FREQ)
PUB startx(CS_PIN, SCK_PIN, MOSI_PIN, MISO_PIN, SPI_HZ=1_000_000): status
' Start using custom I/O settings
if ( lookdown(CS_PIN: 0..63) and lookdown(SCK_PIN: 0..63) and ...
lookdown(MOSI_PIN: 0..63) and lookdown(MISO_PIN: 0..63) )
if ( status := spi.init(SCK_PIN, MOSI_PIN, MISO_PIN, core.SPI_MODE, SPI_HZ) )
_CS := CS_PIN ' copy pins to hub vars
pinh(_CS)
waitus(core.T_POR) ' wait for device startup
if ( MOSI_PIN == MISO_PIN )
spi_mode(3)
else
spi_mode(4)
if ( dev_id() == core.DEVID_RESP ) ' verify communication with device
return
{ if this point is reached, something above failed }
{ Double check I/O pin assignments, connections, power }
{ Lastly - make sure you have at least one free core/cog }
return FALSE
#elseifdef L3G4200D_I2C
PUB start(): status
' Start using default I/O configuration
return startx(SCL, SDA, I2C_FREQ, I2C_ADDR)
PUB startx(SCL_PIN, SDA_PIN, I2C_HZ, ADDR_BITS): status
' Start using custom I/O settings and bus speed
if ( lookdown(SCL_PIN: 0..63) and lookdown(SDA_PIN: 0..63) )
if ( status := i2c.init(SCL_PIN, SDA_PIN, I2C_HZ) )
waitus(core.T_POR) ' wait for device startup
_addr_bits := (ADDR_BITS << 1)
if ( dev_id() == core.DEVID_RESP ) ' verify communication with device
return
{ if this point is reached, something above failed }
{ Double check I/O pin assignments, connections, power }
{ Lastly - make sure you have at least one free core/cog }
return FALSE
#endif
PUB stop()
' Stop the driver
#ifdef L3G4200D_SPI
spi.deinit()
#elseifdef L3G4200D_I2C
i2c.deinit()
#endif
_CS := 0
PUB defaults()
' Factory default settings
blk_updt_ena(FALSE)
data_order(LSBFIRST)
fifo_ena(FALSE)
gyro_axis_ena(%111)
gyro_data_rate(100)
gyro_opmode(POWERDOWN)
gyro_scale(250)
gyro_hpf_ena(FALSE)
gyro_hpf_freq(8_00)
gyro_hpf_mode(HPF_NORMAL_RES)
int1_mask(%00)
int2_mask(%0000)
int_polarity(INTLVL_LOW)
int_outp_type(INT_PP)
PUB preset_active()
' Like defaults(), but place the sensor in active/normal mode
defaults()
gyro_opmode(NORMAL)
blk_updt_ena(TRUE)
int2_mask(%1000)
PUB blk_updt_ena(state=-2): curr_state
' Enable block updates
' Valid values:
' *FALSE (0): Update gyro data outputs continuously
' TRUE (-1 or 1): Pause further updates until both MSB and LSB of data have been read
' Any other value polls the chip and returns the current setting
curr_state := 0
readreg(core.CTRL_REG4, 1, @curr_state)
case abs(state)
0, 1:
state := (abs(state) & 1) << core.BDU
state := ((curr_state & core.BDU_MASK) | state)
writereg(core.CTRL_REG4, 1, @state)
other:
return (((curr_state >> core.BDU) & 1) == 1)
PUB data_order(order=-2): curr_ord
' Set byte order of gyro data
' Valid values:
' *LSBFIRST (0), MSBFIRST (1)
' Any other value polls the chip and returns the current setting
' NOTE: Intended only for use when utilizing raw gyro data from GyroData method.
' GyroDPS expects the data order to be LSBFIRST
curr_ord := 0
readreg(core.CTRL_REG4, 1, @curr_ord)
case order
LSBFIRST, MSBFIRST:
order <<= core.BLE
order := ((curr_ord & core.BLE_MASK) | order)
writereg(core.CTRL_REG4, 1, @order)
other:
return ((curr_ord >> core.BLE) & 1)
PUB dev_id(): id
' Read Device ID
' Known values: $D3
id := 0
readreg(core.WHO_AM_I, 1, @id)
PUB fifo_ena(state=-2): curr_state
' Enable FIFO for gyro data
' Valid values:
' *FALSE (0): FIFO disabled
' TRUE (-1 or 1): FIFO state
' Any other value polls the chip and returns the current setting
curr_state := 0
readreg(core.CTRL_REG5, 1, @curr_state)
case abs(state)
0, 1:
state := (abs(state) & 1) << core.FIFO_EN
state := ((curr_state & core.FIFO_EN_MASK) | state)
writereg(core.CTRL_REG5, 1, @state)
other:
return (((curr_state >> core.FIFO_EN) & 1) == 1)
PUB gyro_axis_ena(mask=-2): curr_mask
' Enable gyroscope individual axes, by mask
' Valid values:
' 0: Disable axis, 1: Enable axis
' Bits %210
' ZYX (default: %111)
' Any other value polls the chip and returns the current setting
curr_mask := 0
readreg(core.CTRL_REG1, 1, @curr_mask)
case mask
%000..%111:
mask := ((curr_mask & core.XYZEN_MASK) | mask) & core.CTRL_REG1_MASK
writereg(core.CTRL_REG1, 1, @mask)
other:
return (curr_mask & core.XYZEN_BITS)
PUB gyro_bias(x, y, z)
' Read gyroscope calibration offset values
' x, y, z: pointers to copy offsets to
longmove(x, @_gbias, 3)
PUB gyro_data(ptr_x, ptr_y, ptr_z) | tmp[2]
' Read gyroscope data
bytefill(@tmp, 0, 8)
readreg(core.OUT_X_L, 2, @tmp.word[X_AXIS])
readreg(core.OUT_Y_L, 2, @tmp.word[Y_AXIS])
readreg(core.OUT_Z_L, 2, @tmp.word[Z_AXIS])
long[ptr_x] := ( (tmp.word[X_AXIS] signx 15) - _gbias[X_AXIS])
long[ptr_y] := ( (tmp.word[Y_AXIS] signx 15) - _gbias[Y_AXIS])
long[ptr_z] := ( (tmp.word[Z_AXIS] signx 15) - _gbias[Z_AXIS])
PUB gyro_data_overrun(): flag
' Flag indicating previously acquired data has been overwritten
' Returns: TRUE (-1) if data has overrun/been overwritten, FALSE otherwise
flag := 0
readreg(core.STATUS_REG, 1, @flag)
return (((flag >> core.ZYXOR) & 1) == 1)
PUB gyro_data_rate(rate=-2): curr_rate
' Set rate of data output, in Hz
' Valid values: *100, 200, 400, 800
' Any other value polls the chip and returns the current setting
curr_rate := 0
readreg(core.CTRL_REG1, 1, @curr_rate)
case rate
100, 200, 400, 800:
rate := lookdownz(rate: 100, 200, 400, 800) << core.DR
rate := ((curr_rate & core.DR_MASK) | rate)
writereg(core.CTRL_REG1, 1, @rate)
other:
curr_rate := (curr_rate >> core.DR) & core.DR_BITS
return lookupz(curr_rate: 100, 200, 400, 800)
PUB gyro_data_rdy(): flag
' Flag indicates gyroscope data is ready
' Returns: TRUE (-1) if data ready, FALSE otherwise
flag := 0
readreg(core.STATUS_REG, 1, @flag)
return (((flag >> core.ZYXDA) & 1) == 1)
PUB gyro_hpf_ena(state=-2): curr_state
' Enable high-pass filter for gyro data, to mitigate long-term drift
' Valid values:
' *FALSE (0): High-pass filter disabled
' TRUE (-1 or 1): High-pass filter state
' Any other value polls the chip and returns the current setting
curr_state := 0
readreg(core.CTRL_REG5, 1, @curr_state)
case abs(state)
0, 1:
state := (abs(state) & 1) << core.HPEN
state := ((curr_state & core.HPEN_MASK) | state)
writereg(core.CTRL_REG5, 1, @state)
other:
return (((curr_state >> core.HPEN) & 1) == 1)
PUB gyro_hpf_freq(freq=-2): curr_freq
' Set high-pass filter frequency, in centi-Hz
' Valid values:
' if gyro_data_rate() == 100:
' 8_00, 4_00, 2_00, 1_00, 0_50, 0_20, 0_10, 0_05, 0_02, 0_01 (default: 8_00)
' gyro_data_rate() == 200:
' 15_00, 8_00, 4_00, 2_00, 1_00, 0_50, 0_20, 0_10, 0_05, 0_02 (default: 15_00)
' gyro_data_rate() == 400:
' 30_00, 15_00, 8_00, 4_00, 2_00, 1_00, 0_50, 0_20, 0_10, 0_05 (default: 30_00)
' gyro_data_rate() == 800:
' 56_00, 30_00, 15_00, 8_00, 4_00, 2_00, 1_00, 0_50, 0_20, 0_10 (default: 56_00)
' Examples:
' 8_00 = 800 centi-Hz or 8Hz
' 0_50 = 50 centi-Hz or 0.5Hz
' 0_02 = 2 centi-Hz or 0.02Hz
curr_freq := 0
readreg(core.CTRL_REG2, 1, @curr_freq)
case gyro_data_rate()
100:
case freq
8_00, 4_00, 2_00, 1_00, 0_50, 0_20, 0_10, 0_05, 0_02, 0_01:
freq := lookdownz(freq: 8_00, 4_00, 2_00, 1_00, 0_50, 0_20, 0_10, 0_05, ...
0_02, 0_01) << core.HPCF
other:
curr_freq := (curr_freq >> core.HPCF) & core.HPCF_BITS
return lookupz(curr_freq: 8_00, 4_00, 2_00, 1_00, 0_50, 0_20, 0_10, 0_05, ...
0_02, 0_01)
200:
case freq
15_00, 8_00, 4_00, 2_00, 1_00, 0_50, 0_20, 0_10, 0_05, 0_02:
freq := lookdownz(freq: 15_00, 8_00, 4_00, 2_00, 1_00, 0_50, 0_20, 0_10, ...
0_05, 0_02) << core.HPCF
other:
curr_freq := (curr_freq >> core.HPCF) & core.HPCF_BITS
return lookupz(curr_freq: 15_00, 8_00, 4_00, 2_00, 1_00, 0_50, 0_20, 0_10, ...
0_05, 0_02)
400:
case freq
30_00, 15_00, 8_00, 4_00, 2_00, 1_00, 0_50, 0_20, 0_10, 0_05:
freq := lookdownz(freq: 30_00, 15_00, 8_00, 4_00, 2_00, 1_00, 0_50, 0_20, ...
0_10, 0_05) << core.HPCF
other:
curr_freq := (curr_freq >> core.HPCF) & core.HPCF_BITS
return lookupz(curr_freq: 30_00, 15_00, 8_00, 4_00, 2_00, 1_00, 0_50, 0_20, ...
0_10, 0_05)
800:
case freq
56_00, 30_00, 15_00, 8_00, 4_00, 2_00, 1_00, 0_50, 0_20, 0_10:
freq := lookdownz(freq: 56_00, 30_00, 15_00, 8_00, 4_00, 2_00, 1_00, 0_50, ...
0_20, 0_10) << core.HPCF
other:
curr_freq := (curr_freq >> core.HPCF) & core.HPCF_BITS
return lookupz(curr_freq: 56_00, 30_00, 15_00, 8_00, 4_00, 2_00, 1_00, ...
0_50, 0_20, 0_10)
freq := ((curr_freq & core.HPCF_MASK) | freq)
writereg(core.CTRL_REG2, 1, @freq)
PUB gyro_hpf_mode(mode=-2): curr_mode
' Set data output high pass filter mode
' Valid values:
' *HPF_NORMAL_RES (0): Normal mode (HPF is reset by reading the
' REFERENCE register) - XXX to be implemented
' HPF_REF (1): Output data calculated as the difference between measured
' angular rate and contents of the REFERENCE register
' HPF_NORMAL (2): Normal mode - same as mode 0
' HPF_AUTO_RES (3): Automatically reset when a configured interrupt
' occurs
' Any other value polls the chip and returns the current setting
curr_mode := 0
readreg(core.CTRL_REG2, 1, @curr_mode)
case mode
HPF_NORMAL_RES, HPF_REF, HPF_NORMAL, HPF_AUTO_RES:
mode <<= core.HPM
mode := ((curr_mode & core.HPM_MASK) | mode)
writereg(core.CTRL_REG2, 1, @mode)
other:
return ((curr_mode >> core.HPM) & core.HPM_BITS)
PUB gyro_lpf_freq(freq=-2): curr_freq
' Set gyroscope low-pass filter frequency, in Hz
' Valid values:
' When gyro_data_rate() == ...:
' 100: 12 (12.5), 25
' 200: 12 (12.5), 25, 50, 70
' 400: 20, 25, 50, 110
' 800: 30, 35, 50, 110
' NOTE: Available values depend on current gyro_data_rate()
' Any other value polls the chip and returns the current setting
curr_freq := 0
readreg(core.CTRL_REG1, 1, @curr_freq)
case freq
12{.5}, 20, 25, 30, 35, 50, 70, 110:
case gyro_data_rate() ' effective LPF depends on ODR
100:
freq := lookdownz(freq: 12, 25)
200:
freq := lookdownz(freq: 12, 25, 50, 70)
400:
freq := lookdownz(freq: 20, 25, 50, 110)
800:
freq := lookdownz(freq: 30, 35, 50, 110)
freq <<= core.BW
freq := ((curr_freq & core.BW_MASK) | freq) & core.CTRL_REG1_MASK
writereg(core.CTRL_REG1, 1, @freq)
other:
curr_freq := (curr_freq >> core.BW) & core.BW_BITS
case gyro_data_rate()
100:
return lookupz(curr_freq: 12, 25, 25, 25)
200:
return lookupz(curr_freq: 12, 25, 50, 70)
400:
return lookupz(curr_freq: 20, 25, 50, 110)
800:
return lookupz(curr_freq: 30, 35, 50, 110)
PUB gyro_opmode(mode=-2): curr_mode
' Set operation mode
' Valid values:
' *POWERDOWN (0): Power down - lowest power state
' SLEEP (1): Sleep - sensor enabled, but X, Y, Z outputs disabled
' NORMAL (2): Normal - active operating state
' Any other value polls the chip and returns the current setting
curr_mode := 0
readreg(core.CTRL_REG1, 1, @curr_mode)
case mode
POWERDOWN:
curr_mode &= core.PD_MASK
SLEEP:
mode := (1 << core.PD)
curr_mode &= core.XYZEN_MASK
NORMAL:
mode := (1 << core.PD)
curr_mode &= core.PD_MASK
other:
curr_mode := (curr_mode >> core.PD) & 1
if (curr_mode & core.XYZEN_BITS)
curr_mode += 1
return
mode := (curr_mode | mode)
writereg(core.CTRL_REG1, 1, @mode)
PUB gyro_scale(dps=-2): curr_dps
' Set gyro full-scale range, in degrees per second
' Valid values: *250, 500, 2000
' Any other value polls the chip and returns the current setting
curr_dps := 0
readreg(core.CTRL_REG4, 1, @curr_dps)
case dps
250, 500, 2000:
dps := lookdownz(dps: 250, 500, 2000) << core.FS
_gres := lookupz(dps >> core.FS: 8_750, 17_500, 70_000)
dps := ((curr_dps & core.FS_MASK) | dps)
writereg(core.CTRL_REG4, 1, @dps)
other:
curr_dps := (curr_dps >> core.FS) & core.FS_BITS
return lookupz(curr_dps: 250, 500, 2000)
PUB gyro_set_bias(x, y, z)
' Read or write/manually set Gyroscope calibration offset values
' Valid values:
' -32768..32767 (clamped to range)
x := -32768 #> x <# 32767
y := -32768 #> y <# 32767
z := -32768 #> z <# 32767
longmove(@_gbias, @x, 3)
PUB int1_mask(mask=-2): curr_mask
' Set interrupt/function mask for INT1 pin
' Valid values:
' Bits: 1..0
' 1: Interrupt enable (*0: Disable, 1: Enable)
' 0: Boot status (*0: Disable, 1: Enable)
curr_mask := 0
readreg(core.CTRL_REG3, 1, @curr_mask)
case mask
%00..%11:
mask <<= core.INT1
mask := ((curr_mask & core.INT1_MASK) | mask)
writereg(core.CTRL_REG3, 1, @mask)
other:
return ((curr_mask >> core.INT1) & core.INT1_BITS)
PUB int2_mask(mask=-2): curr_mask
' Set interrupt/function mask for INT2 pin
' Valid values:
' Bits: 3..0
' 3: Data ready (default: 0)
' 2: FIFO watermark (default: 0)
' 1: FIFO overrun (default: 0)
' 0: FIFO empty (default: 0)
curr_mask := 0
readreg(core.CTRL_REG3, 1, @curr_mask)
case mask
%0000..%1111:
mask := ((curr_mask & core.INT2_MASK) | mask)
writereg(core.CTRL_REG3, 1, @mask)
other:
return (curr_mask & core.INT2_BITS)
PUB int_polarity(state=-2): curr_state
' Set active state for interrupts
' Valid values: *INTLVL_HIGH (0), INTLVL_LOW (1)
' Any other value polls the chip and returns the current setting
curr_state := 0
readreg(core.CTRL_REG3, 1, @curr_state)
case state
INTLVL_HIGH, INTLVL_LOW:
state <<= core.H_LACTIVE
state := ((curr_state & core.H_LACTIVE_MASK) | state)
writereg(core.CTRL_REG3, 1, @state)
other:
return ((curr_state >> core.H_LACTIVE) & 1)
PUB int_outp_type(type=-2): curr_type
' Set interrupt pin output type
' Valid values:
' *INT_PP (0): Push-pull
' INT_OD (1): Open-drain
' Any other value polls the chip and returns the current setting
curr_type := 0
readreg(core.CTRL_REG3, 1, @curr_type)
case type
INT_PP, INT_OD:
type := type << core.PP_OD
type := ((curr_type & core.PP_OD_MASK) | type)
writereg(core.CTRL_REG3, 1, @type)
other:
return ((curr_type >> core.PP_OD) & 1)
PUB temp_data(): temp
' Read device temperature
' Returns: s8
' NOTE: This temperature reading is the gyroscope die temperature,
' not an ambient temperature reading. It is meant to be used as
' a relative change in temperature, not an absolute temperature
' reading
readreg(core.OUT_TEMP, 1, @temp)
return (temp signx 7)
PRI readreg(reg_nr, nr_bytes, ptr_buff) | cmd_pkt
' Read nr_bytes from device into ptr_buff
case reg_nr
$28..$2D: ' prioritize output data regs
reg_nr |= MS ' indicate multi-byte xfer
$0F, $20..$27, $2E..$38:
other:
return
#ifdef L3G4200D_SPI
reg_nr |= SPI_R ' indicate read xfer
pinl(_CS)
spi.wr_byte(reg_nr)
spi.rdblock_lsbf(ptr_buff, nr_bytes)
pinh(_CS)
#elseifdef L3G4200D_I2C
cmd_pkt.byte[0] := (SLAVE_WR | _addr_bits)
cmd_pkt.byte[1] := reg_nr
i2c.start()
i2c.wrblock_lsbf(@cmd_pkt, 2)
i2c.stop()
i2c.start()
i2c.write(SLAVE_RD | _addr_bits)
i2c.rdblock_lsbf(ptr_buff, nr_bytes, i2c.NAK)
i2c.stop()
#endif
PRI spi_mode(m) | tmp
' Set SPI mode
' m: 3 (3-wire mode), 4 (4-wire mode)
tmp := 0
readreg(core.CTRL_REG4, 1, @tmp)
if ( m == 3 )
tmp := (tmp | core.SPI_3W)
elseif ( m == 4 )
tmp &= core.SIM_MASK
writereg(core.CTRL_REG4, 1, @tmp)
PRI writereg(reg_nr, nr_bytes, ptr_buff) | cmd_pkt
' Write nr_bytes to device from ptr_buff
case reg_nr
$20..$25, $2E, $30, $32..$38:
other:
return
#ifdef L3G4200D_SPI
pinl(_CS)
spi.wr_byte(reg_nr)
spi.wrblock_lsbf(ptr_buff, nr_bytes)
pinh(_CS)
#elseifdef L3G4200D_I2C
cmd_pkt.byte[0] := (SLAVE_WR | _addr_bits)
cmd_pkt.byte[1] := reg_nr
i2c.start()
i2c.wrblock_lsbf(@cmd_pkt, 2)
i2c.wrblock_lsbf(ptr_buff, nr_bytes)
i2c.stop()
#endif
DAT
{
Copyright 2025 Jesse Burt
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
}