Skip to content

Latest commit

 

History

History
295 lines (252 loc) · 6.71 KB

File metadata and controls

295 lines (252 loc) · 6.71 KB
comments difficulty edit_url tags
true
Medium
Array
Backtracking

中文文档

Description

Given an array nums of distinct integers, return all the possible permutations. You can return the answer in any order.

 

Example 1:

Input: nums = [1,2,3]
Output: [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

Example 2:

Input: nums = [0,1]
Output: [[0,1],[1,0]]

Example 3:

Input: nums = [1]
Output: [[1]]

 

Constraints:

  • 1 <= nums.length <= 6
  • -10 <= nums[i] <= 10
  • All the integers of nums are unique.

Solutions

Solution 1: DFS (Backtracking)

We design a function $dfs(i)$ to represent that the first $i$ positions have been filled, and now we need to fill the $i+1$ position. We enumerate all possible numbers, if this number has not been filled, we fill in this number, and then continue to fill the next position, until all positions are filled.

The time complexity is $O(n \times n!)$, where $n$ is the length of the array. There are $n!$ permutations in total, and each permutation takes $O(n)$ time to construct.

Similar problems:

Python3

class Solution:
    def permute(self, nums: List[int]) -> List[List[int]]:
        return list(permutations(nums))

Python3

class Solution:
    def permute(self, nums: List[int]) -> List[List[int]]:
        def dfs(i):
            if i == n:
                ans.append(t[:])
                return
            for j in range(n):
                if not vis[j]:
                    vis[j] = True
                    t[i] = nums[j]
                    dfs(i + 1)
                    vis[j] = False

        n = len(nums)
        vis = [False] * n
        t = [0] * n
        ans = []
        dfs(0)
        return ans

Java

class Solution {
    private List<List<Integer>> ans = new ArrayList<>();
    private List<Integer> t = new ArrayList<>();
    private boolean[] vis;
    private int[] nums;

    public List<List<Integer>> permute(int[] nums) {
        this.nums = nums;
        vis = new boolean[nums.length];
        dfs(0);
        return ans;
    }

    private void dfs(int i) {
        if (i == nums.length) {
            ans.add(new ArrayList<>(t));
            return;
        }
        for (int j = 0; j < nums.length; ++j) {
            if (!vis[j]) {
                vis[j] = true;
                t.add(nums[j]);
                dfs(i + 1);
                t.remove(t.size() - 1);
                vis[j] = false;
            }
        }
    }
}

C++

class Solution {
public:
    vector<vector<int>> permute(vector<int>& nums) {
        int n = nums.size();
        vector<vector<int>> ans;
        vector<int> t(n);
        vector<bool> vis(n);
        function<void(int)> dfs = [&](int i) {
            if (i == n) {
                ans.emplace_back(t);
                return;
            }
            for (int j = 0; j < n; ++j) {
                if (!vis[j]) {
                    vis[j] = true;
                    t[i] = nums[j];
                    dfs(i + 1);
                    vis[j] = false;
                }
            }
        };
        dfs(0);
        return ans;
    }
};

Go

func permute(nums []int) (ans [][]int) {
	n := len(nums)
	t := make([]int, n)
	vis := make([]bool, n)
	var dfs func(int)
	dfs = func(i int) {
		if i == n {
			ans = append(ans, slices.Clone(t))
			return
		}
		for j, v := range nums {
			if !vis[j] {
				vis[j] = true
				t[i] = v
				dfs(i + 1)
				vis[j] = false
			}
		}
	}
	dfs(0)
	return
}

TypeScript

function permute(nums: number[]): number[][] {
    const n = nums.length;
    const res: number[][] = [];
    const dfs = (i: number) => {
        if (i === n) {
            res.push([...nums]);
        }
        for (let j = i; j < n; j++) {
            [nums[i], nums[j]] = [nums[j], nums[i]];
            dfs(i + 1);
            [nums[i], nums[j]] = [nums[j], nums[i]];
        }
    };
    dfs(0);
    return res;
}

Rust

impl Solution {
    fn dfs(i: usize, nums: &mut Vec<i32>, res: &mut Vec<Vec<i32>>) {
        let n = nums.len();
        if i == n {
            res.push(nums.clone());
            return;
        }
        for j in i..n {
            nums.swap(i, j);
            Self::dfs(i + 1, nums, res);
            nums.swap(i, j);
        }
    }

    pub fn permute(mut nums: Vec<i32>) -> Vec<Vec<i32>> {
        let mut res = vec![];
        Self::dfs(0, &mut nums, &mut res);
        res
    }
}

JavaScript

/**
 * @param {number[]} nums
 * @return {number[][]}
 */
var permute = function (nums) {
    const n = nums.length;
    const ans = [];
    const t = [];
    const vis = new Array(n).fill(false);
    function dfs(i) {
        if (i >= n) {
            ans.push([...t]);
            return;
        }
        for (let j = 0; j < n; ++j) {
            if (!vis[j]) {
                vis[j] = true;
                t.push(nums[j]);
                dfs(i + 1);
                vis[j] = false;
                t.pop();
            }
        }
    }
    dfs(0);
    return ans;
};

C#

public class Solution {
    public IList<IList<int>> Permute(int[] nums) {
        var ans = new List<IList<int>>();
        var t = new List<int>();
        var vis = new bool[nums.Length];
        dfs(nums, 0, t, vis, ans);
        return ans;
    }

    private void dfs(int[] nums, int i, IList<int> t, bool[] vis, IList<IList<int>> ans) {
        if (i >= nums.Length) {
            ans.Add(new List<int>(t));
            return;
        }
        for (int j = 0; j < nums.Length; ++j) {
            if (!vis[j]) {
                vis[j] = true;
                t.Add(nums[j]);
                dfs(nums, i + 1, t, vis, ans);
                t.RemoveAt(t.Count - 1);
                vis[j] = false;
            }
        }
    }
}