comments | difficulty | edit_url | tags | |||
---|---|---|---|---|---|---|
true |
Easy |
|
You are given two integer arrays nums1
and nums2
, sorted in non-decreasing order, and two integers m
and n
, representing the number of elements in nums1
and nums2
respectively.
Merge nums1
and nums2
into a single array sorted in non-decreasing order.
The final sorted array should not be returned by the function, but instead be stored inside the array nums1
. To accommodate this, nums1
has a length of m + n
, where the first m
elements denote the elements that should be merged, and the last n
elements are set to 0
and should be ignored. nums2
has a length of n
.
Example 1:
Input: nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3 Output: [1,2,2,3,5,6] Explanation: The arrays we are merging are [1,2,3] and [2,5,6]. The result of the merge is [1,2,2,3,5,6] with the underlined elements coming from nums1.
Example 2:
Input: nums1 = [1], m = 1, nums2 = [], n = 0 Output: [1] Explanation: The arrays we are merging are [1] and []. The result of the merge is [1].
Example 3:
Input: nums1 = [0], m = 0, nums2 = [1], n = 1 Output: [1] Explanation: The arrays we are merging are [] and [1]. The result of the merge is [1]. Note that because m = 0, there are no elements in nums1. The 0 is only there to ensure the merge result can fit in nums1.
Constraints:
nums1.length == m + n
nums2.length == n
0 <= m, n <= 200
1 <= m + n <= 200
-109 <= nums1[i], nums2[j] <= 109
Follow up: Can you come up with an algorithm that runs in O(m + n)
time?
We use two pointers
Every time we compare the two elements at the end of the two arrays, and move the larger one to the end of the merged array. Then we move the pointer one step forward, and repeat this process until the two pointers reach the start of the arrays.
The time complexity is
class Solution:
def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:
k = m + n - 1
i, j = m - 1, n - 1
while j >= 0:
if i >= 0 and nums1[i] > nums2[j]:
nums1[k] = nums1[i]
i -= 1
else:
nums1[k] = nums2[j]
j -= 1
k -= 1
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
for (int i = m - 1, j = n - 1, k = m + n - 1; j >= 0; --k) {
nums1[k] = i >= 0 && nums1[i] > nums2[j] ? nums1[i--] : nums2[j--];
}
}
}
class Solution {
public:
void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
for (int i = m - 1, j = n - 1, k = m + n - 1; ~j; --k) {
nums1[k] = i >= 0 && nums1[i] > nums2[j] ? nums1[i--] : nums2[j--];
}
}
};
func merge(nums1 []int, m int, nums2 []int, n int) {
for i, j, k := m-1, n-1, m+n-1; j >= 0; k-- {
if i >= 0 && nums1[i] > nums2[j] {
nums1[k] = nums1[i]
i--
} else {
nums1[k] = nums2[j]
j--
}
}
}
/**
Do not return anything, modify nums1 in-place instead.
*/
function merge(nums1: number[], m: number, nums2: number[], n: number): void {
for (let i = m - 1, j = n - 1, k = m + n - 1; j >= 0; --k) {
nums1[k] = i >= 0 && nums1[i] > nums2[j] ? nums1[i--] : nums2[j--];
}
}
impl Solution {
pub fn merge(nums1: &mut Vec<i32>, m: i32, nums2: &mut Vec<i32>, n: i32) {
let mut k = (m + n - 1) as usize;
let mut i = (m - 1) as isize;
let mut j = (n - 1) as isize;
while j >= 0 {
if i >= 0 && nums1[i as usize] > nums2[j as usize] {
nums1[k] = nums1[i as usize];
i -= 1;
} else {
nums1[k] = nums2[j as usize];
j -= 1;
}
k -= 1;
}
}
}
/**
* @param {number[]} nums1
* @param {number} m
* @param {number[]} nums2
* @param {number} n
* @return {void} Do not return anything, modify nums1 in-place instead.
*/
var merge = function (nums1, m, nums2, n) {
for (let i = m - 1, j = n - 1, k = m + n - 1; j >= 0; --k) {
nums1[k] = i >= 0 && nums1[i] > nums2[j] ? nums1[i--] : nums2[j--];
}
};
class Solution {
/**
* @param Integer[] $nums1
* @param Integer $m
* @param Integer[] $nums2
* @param Integer $n
* @return NULL
*/
function merge(&$nums1, $m, $nums2, $n) {
while (count($nums1) > $m) {
array_pop($nums1);
}
for ($i = 0; $i < $n; $i++) {
array_push($nums1, $nums2[$i]);
}
asort($nums1);
}
}