Skip to content

Latest commit

 

History

History
224 lines (179 loc) · 6.17 KB

File metadata and controls

224 lines (179 loc) · 6.17 KB
comments difficulty edit_url tags
true
Easy
Array
Two Pointers
Sorting

中文文档

Description

You are given two integer arrays nums1 and nums2, sorted in non-decreasing order, and two integers m and n, representing the number of elements in nums1 and nums2 respectively.

Merge nums1 and nums2 into a single array sorted in non-decreasing order.

The final sorted array should not be returned by the function, but instead be stored inside the array nums1. To accommodate this, nums1 has a length of m + n, where the first m elements denote the elements that should be merged, and the last n elements are set to 0 and should be ignored. nums2 has a length of n.

 

Example 1:

Input: nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
Output: [1,2,2,3,5,6]
Explanation: The arrays we are merging are [1,2,3] and [2,5,6].
The result of the merge is [1,2,2,3,5,6] with the underlined elements coming from nums1.

Example 2:

Input: nums1 = [1], m = 1, nums2 = [], n = 0
Output: [1]
Explanation: The arrays we are merging are [1] and [].
The result of the merge is [1].

Example 3:

Input: nums1 = [0], m = 0, nums2 = [1], n = 1
Output: [1]
Explanation: The arrays we are merging are [] and [1].
The result of the merge is [1].
Note that because m = 0, there are no elements in nums1. The 0 is only there to ensure the merge result can fit in nums1.

 

Constraints:

  • nums1.length == m + n
  • nums2.length == n
  • 0 <= m, n <= 200
  • 1 <= m + n <= 200
  • -109 <= nums1[i], nums2[j] <= 109

 

Follow up: Can you come up with an algorithm that runs in O(m + n) time?

Solutions

Solution 1: Two Pointers

We use two pointers $i$ and $j$ pointing to the end of two arrays, and a pointer $k$ pointing to the end of the merged array.

Every time we compare the two elements at the end of the two arrays, and move the larger one to the end of the merged array. Then we move the pointer one step forward, and repeat this process until the two pointers reach the start of the arrays.

The time complexity is $O(m + n)$, where $m$ and $n$ are the lengths of two arrays. The space complexity is $O(1)$.

Python3

class Solution:
    def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:
        k = m + n - 1
        i, j = m - 1, n - 1
        while j >= 0:
            if i >= 0 and nums1[i] > nums2[j]:
                nums1[k] = nums1[i]
                i -= 1
            else:
                nums1[k] = nums2[j]
                j -= 1
            k -= 1

Java

class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        for (int i = m - 1, j = n - 1, k = m + n - 1; j >= 0; --k) {
            nums1[k] = i >= 0 && nums1[i] > nums2[j] ? nums1[i--] : nums2[j--];
        }
    }
}

C++

class Solution {
public:
    void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
        for (int i = m - 1, j = n - 1, k = m + n - 1; ~j; --k) {
            nums1[k] = i >= 0 && nums1[i] > nums2[j] ? nums1[i--] : nums2[j--];
        }
    }
};

Go

func merge(nums1 []int, m int, nums2 []int, n int) {
	for i, j, k := m-1, n-1, m+n-1; j >= 0; k-- {
		if i >= 0 && nums1[i] > nums2[j] {
			nums1[k] = nums1[i]
			i--
		} else {
			nums1[k] = nums2[j]
			j--
		}
	}
}

TypeScript

/**
 Do not return anything, modify nums1 in-place instead.
 */
function merge(nums1: number[], m: number, nums2: number[], n: number): void {
    for (let i = m - 1, j = n - 1, k = m + n - 1; j >= 0; --k) {
        nums1[k] = i >= 0 && nums1[i] > nums2[j] ? nums1[i--] : nums2[j--];
    }
}

Rust

impl Solution {
    pub fn merge(nums1: &mut Vec<i32>, m: i32, nums2: &mut Vec<i32>, n: i32) {
        let mut k = (m + n - 1) as usize;
        let mut i = (m - 1) as isize;
        let mut j = (n - 1) as isize;

        while j >= 0 {
            if i >= 0 && nums1[i as usize] > nums2[j as usize] {
                nums1[k] = nums1[i as usize];
                i -= 1;
            } else {
                nums1[k] = nums2[j as usize];
                j -= 1;
            }
            k -= 1;
        }
    }
}

JavaScript

/**
 * @param {number[]} nums1
 * @param {number} m
 * @param {number[]} nums2
 * @param {number} n
 * @return {void} Do not return anything, modify nums1 in-place instead.
 */
var merge = function (nums1, m, nums2, n) {
    for (let i = m - 1, j = n - 1, k = m + n - 1; j >= 0; --k) {
        nums1[k] = i >= 0 && nums1[i] > nums2[j] ? nums1[i--] : nums2[j--];
    }
};

PHP

class Solution {
    /**
     * @param Integer[] $nums1
     * @param Integer $m
     * @param Integer[] $nums2
     * @param Integer $n
     * @return NULL
     */
    function merge(&$nums1, $m, $nums2, $n) {
        while (count($nums1) > $m) {
            array_pop($nums1);
        }
        for ($i = 0; $i < $n; $i++) {
            array_push($nums1, $nums2[$i]);
        }
        asort($nums1);
    }
}