comments | difficulty | edit_url | tags | ||||
---|---|---|---|---|---|---|---|
true |
Medium |
|
Given the root
of a binary tree, determine if it is a valid binary search tree (BST).
A valid BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input: root = [2,1,3] Output: true
Example 2:
Input: root = [5,1,4,null,null,3,6] Output: false Explanation: The root node's value is 5 but its right child's value is 4.
Constraints:
- The number of nodes in the tree is in the range
[1, 104]
. -231 <= Node.val <= 231 - 1
We can perform a recursive in-order traversal on the binary tree. If the result of the traversal is strictly ascending, then this tree is a binary search tree.
Therefore, we use a variable prev
to save the last node we traversed. Initially, prev = -∞
. Then we recursively traverse the left subtree. If the left subtree is not a binary search tree, we directly return False
. Otherwise, we check whether the value of the current node is greater than prev
. If not, we return False
. Otherwise, we update prev
to the value of the current node, and then recursively traverse the right subtree.
The time complexity is
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isValidBST(self, root: Optional[TreeNode]) -> bool:
def dfs(root: Optional[TreeNode]) -> bool:
if root is None:
return True
if not dfs(root.left):
return False
nonlocal prev
if prev >= root.val:
return False
prev = root.val
return dfs(root.right)
prev = -inf
return dfs(root)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private TreeNode prev;
public boolean isValidBST(TreeNode root) {
return dfs(root);
}
private boolean dfs(TreeNode root) {
if (root == null) {
return true;
}
if (!dfs(root.left)) {
return false;
}
if (prev != null && prev.val >= root.val) {
return false;
}
prev = root;
return dfs(root.right);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isValidBST(TreeNode* root) {
TreeNode* prev = nullptr;
function<bool(TreeNode*)> dfs = [&](TreeNode* root) {
if (!root) {
return true;
}
if (!dfs(root->left)) {
return false;
}
if (prev && prev->val >= root->val) {
return false;
}
prev = root;
return dfs(root->right);
};
return dfs(root);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isValidBST(root *TreeNode) bool {
var prev *TreeNode
var dfs func(*TreeNode) bool
dfs = func(root *TreeNode) bool {
if root == nil {
return true
}
if !dfs(root.Left) {
return false
}
if prev != nil && prev.Val >= root.Val {
return false
}
prev = root
return dfs(root.Right)
}
return dfs(root)
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function isValidBST(root: TreeNode | null): boolean {
let prev: TreeNode | null = null;
const dfs = (root: TreeNode | null): boolean => {
if (!root) {
return true;
}
if (!dfs(root.left)) {
return false;
}
if (prev && prev.val >= root.val) {
return false;
}
prev = root;
return dfs(root.right);
};
return dfs(root);
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, prev: &mut Option<i32>) -> bool {
if root.is_none() {
return true;
}
let root = root.as_ref().unwrap().borrow();
if !Self::dfs(&root.left, prev) {
return false;
}
if prev.is_some() && prev.unwrap() >= root.val {
return false;
}
*prev = Some(root.val);
Self::dfs(&root.right, prev)
}
pub fn is_valid_bst(root: Option<Rc<RefCell<TreeNode>>>) -> bool {
Self::dfs(&root, &mut None)
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {boolean}
*/
var isValidBST = function (root) {
let prev = null;
const dfs = root => {
if (!root) {
return true;
}
if (!dfs(root.left)) {
return false;
}
if (prev && prev.val >= root.val) {
return false;
}
prev = root;
return dfs(root.right);
};
return dfs(root);
};
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
private TreeNode prev;
public bool IsValidBST(TreeNode root) {
return dfs(root);
}
private bool dfs(TreeNode root) {
if (root == null) {
return true;
}
if (!dfs(root.left)) {
return false;
}
if (prev != null && prev.val >= root.val) {
return false;
}
prev = root;
return dfs(root.right);
}
}