comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Medium |
|
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security systems connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given an integer array nums
representing the amount of money of each house, return the maximum amount of money you can rob tonight without alerting the police.
Example 1:
Input: nums = [1,2,3,1] Output: 4 Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3). Total amount you can rob = 1 + 3 = 4.
Example 2:
Input: nums = [2,7,9,3,1] Output: 12 Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1). Total amount you can rob = 2 + 9 + 1 = 12.
Constraints:
1 <= nums.length <= 100
0 <= nums[i] <= 400
We design a function
The execution process of the function
- If
$i \ge \textit{len}(\textit{nums})$ , it means all houses have been considered, and we directly return$0$ ; - Otherwise, consider stealing from the
$i$ -th house, then$\textit{dfs}(i) = \textit{nums}[i] + \textit{dfs}(i+2)$ ; if not stealing from the$i$ -th house, then$\textit{dfs}(i) = \textit{dfs}(i+1)$ . - Return
$\max(\textit{nums}[i] + \textit{dfs}(i+2), \textit{dfs}(i+1))$ .
To avoid repeated calculations, we use memoization search. The result of
The time complexity is
class Solution:
def rob(self, nums: List[int]) -> int:
@cache
def dfs(i: int) -> int:
if i >= len(nums):
return 0
return max(nums[i] + dfs(i + 2), dfs(i + 1))
return dfs(0)
class Solution {
private Integer[] f;
private int[] nums;
public int rob(int[] nums) {
this.nums = nums;
f = new Integer[nums.length];
return dfs(0);
}
private int dfs(int i) {
if (i >= nums.length) {
return 0;
}
if (f[i] == null) {
f[i] = Math.max(nums[i] + dfs(i + 2), dfs(i + 1));
}
return f[i];
}
}
class Solution {
public:
int rob(vector<int>& nums) {
int n = nums.size();
int f[n];
memset(f, -1, sizeof(f));
auto dfs = [&](auto&& dfs, int i) -> int {
if (i >= n) {
return 0;
}
if (f[i] < 0) {
f[i] = max(nums[i] + dfs(dfs, i + 2), dfs(dfs, i + 1));
}
return f[i];
};
return dfs(dfs, 0);
}
};
func rob(nums []int) int {
n := len(nums)
f := make([]int, n)
for i := range f {
f[i] = -1
}
var dfs func(int) int
dfs = func(i int) int {
if i >= n {
return 0
}
if f[i] < 0 {
f[i] = max(nums[i]+dfs(i+2), dfs(i+1))
}
return f[i]
}
return dfs(0)
}
function rob(nums: number[]): number {
const n = nums.length;
const f: number[] = Array(n).fill(-1);
const dfs = (i: number): number => {
if (i >= n) {
return 0;
}
if (f[i] < 0) {
f[i] = Math.max(nums[i] + dfs(i + 2), dfs(i + 1));
}
return f[i];
};
return dfs(0);
}
impl Solution {
pub fn rob(nums: Vec<i32>) -> i32 {
fn dfs(i: usize, nums: &Vec<i32>, f: &mut Vec<i32>) -> i32 {
if i >= nums.len() {
return 0;
}
if f[i] < 0 {
f[i] = (nums[i] + dfs(i + 2, nums, f)).max(dfs(i + 1, nums, f));
}
f[i]
}
let n = nums.len();
let mut f = vec![-1; n];
dfs(0, &nums, &mut f)
}
}
function rob(nums) {
const n = nums.length;
const f = Array(n).fill(-1);
const dfs = i => {
if (i >= n) {
return 0;
}
if (f[i] < 0) {
f[i] = Math.max(nums[i] + dfs(i + 2), dfs(i + 1));
}
return f[i];
};
return dfs(0);
}
We define
Consider the case where
- Do not rob the $i$th house, the total amount of robbery is
$f[i-1]$ ; - Rob the $i$th house, the total amount of robbery is
$f[i-2]+nums[i-1]$ ;
Therefore, we can get the state transition equation:
The final answer is
The time complexity is
class Solution:
def rob(self, nums: List[int]) -> int:
n = len(nums)
f = [0] * (n + 1)
f[1] = nums[0]
for i in range(2, n + 1):
f[i] = max(f[i - 1], f[i - 2] + nums[i - 1])
return f[n]
class Solution {
public int rob(int[] nums) {
int n = nums.length;
int[] f = new int[n + 1];
f[1] = nums[0];
for (int i = 2; i <= n; ++i) {
f[i] = Math.max(f[i - 1], f[i - 2] + nums[i - 1]);
}
return f[n];
}
}
class Solution {
public:
int rob(vector<int>& nums) {
int n = nums.size();
int f[n + 1];
memset(f, 0, sizeof(f));
f[1] = nums[0];
for (int i = 2; i <= n; ++i) {
f[i] = max(f[i - 1], f[i - 2] + nums[i - 1]);
}
return f[n];
}
};
func rob(nums []int) int {
n := len(nums)
f := make([]int, n+1)
f[1] = nums[0]
for i := 2; i <= n; i++ {
f[i] = max(f[i-1], f[i-2]+nums[i-1])
}
return f[n]
}
function rob(nums: number[]): number {
const n = nums.length;
const f: number[] = Array(n + 1).fill(0);
f[1] = nums[0];
for (let i = 2; i <= n; ++i) {
f[i] = Math.max(f[i - 1], f[i - 2] + nums[i - 1]);
}
return f[n];
}
impl Solution {
pub fn rob(nums: Vec<i32>) -> i32 {
let n = nums.len();
let mut f = vec![0; n + 1];
f[1] = nums[0];
for i in 2..=n {
f[i] = f[i - 1].max(f[i - 2] + nums[i - 1]);
}
f[n]
}
}
function rob(nums) {
const n = nums.length;
const f = Array(n + 1).fill(0);
f[1] = nums[0];
for (let i = 2; i <= n; ++i) {
f[i] = Math.max(f[i - 1], f[i - 2] + nums[i - 1]);
}
return f[n];
}
We notice that when
class Solution:
def rob(self, nums: List[int]) -> int:
f = g = 0
for x in nums:
f, g = max(f, g), f + x
return max(f, g)
class Solution {
public int rob(int[] nums) {
int f = 0, g = 0;
for (int x : nums) {
int ff = Math.max(f, g);
g = f + x;
f = ff;
}
return Math.max(f, g);
}
}
class Solution {
public:
int rob(vector<int>& nums) {
int f = 0, g = 0;
for (int& x : nums) {
int ff = max(f, g);
g = f + x;
f = ff;
}
return max(f, g);
}
};
func rob(nums []int) int {
f, g := 0, 0
for _, x := range nums {
f, g = max(f, g), f+x
}
return max(f, g)
}
function rob(nums: number[]): number {
let [f, g] = [0, 0];
for (const x of nums) {
[f, g] = [Math.max(f, g), f + x];
}
return Math.max(f, g);
}
impl Solution {
pub fn rob(nums: Vec<i32>) -> i32 {
let mut f = [0, 0];
for x in nums {
f = [f[0].max(f[1]), f[0] + x];
}
f[0].max(f[1])
}
}
function rob(nums) {
let [f, g] = [0, 0];
for (const x of nums) {
[f, g] = [Math.max(f, g), f + x];
}
return Math.max(f, g);
}