Skip to content

Latest commit

 

History

History
380 lines (318 loc) · 9.17 KB

File metadata and controls

380 lines (318 loc) · 9.17 KB
comments difficulty edit_url tags
true
中等
数组
二分查找
分治
矩阵

English Version

题目描述

编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:

  • 每行的元素从左到右升序排列。
  • 每列的元素从上到下升序排列。

 

示例 1:

输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true

示例 2:

输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
输出:false

 

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= n, m <= 300
  • -109 <= matrix[i][j] <= 109
  • 每行的所有元素从左到右升序排列
  • 每列的所有元素从上到下升序排列
  • -109 <= target <= 109

解法

方法一:二分查找

由于每一行的所有元素升序排列,因此,对于每一行,我们可以使用二分查找找到第一个大于等于 target 的元素,然后判断该元素是否等于 target。如果等于 target,说明找到了目标值,直接返回 true。如果不等于 target,说明这一行的所有元素都小于 target,应该继续搜索下一行。

如果所有行都搜索完了,都没有找到目标值,说明目标值不存在,返回 false

时间复杂度 $O(m \times \log n)$,其中 $m$$n$ 分别为矩阵的行数和列数。空间复杂度 $O(1)$

Python3

class Solution:
    def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
        for row in matrix:
            j = bisect_left(row, target)
            if j < len(matrix[0]) and row[j] == target:
                return True
        return False

Java

class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        for (var row : matrix) {
            int j = Arrays.binarySearch(row, target);
            if (j >= 0) {
                return true;
            }
        }
        return false;
    }
}

C++

class Solution {
public:
    bool searchMatrix(vector<vector<int>>& matrix, int target) {
        for (auto& row : matrix) {
            int j = lower_bound(row.begin(), row.end(), target) - row.begin();
            if (j < matrix[0].size() && row[j] == target) {
                return true;
            }
        }
        return false;
    }
};

Go

func searchMatrix(matrix [][]int, target int) bool {
	for _, row := range matrix {
		j := sort.SearchInts(row, target)
		if j < len(matrix[0]) && row[j] == target {
			return true
		}
	}
	return false
}

TypeScript

function searchMatrix(matrix: number[][], target: number): boolean {
    const n = matrix[0].length;
    for (const row of matrix) {
        let left = 0,
            right = n;
        while (left < right) {
            const mid = (left + right) >> 1;
            if (row[mid] >= target) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        if (left != n && row[left] == target) {
            return true;
        }
    }
    return false;
}

Rust

use std::cmp::Ordering;

impl Solution {
    pub fn search_matrix(matrix: Vec<Vec<i32>>, target: i32) -> bool {
        let m = matrix.len();
        let n = matrix[0].len();
        let mut i = 0;
        let mut j = n;
        while i < m && j > 0 {
            match target.cmp(&matrix[i][j - 1]) {
                Ordering::Less => {
                    j -= 1;
                }
                Ordering::Greater => {
                    i += 1;
                }
                Ordering::Equal => {
                    return true;
                }
            }
        }
        false
    }
}

JavaScript

/**
 * @param {number[][]} matrix
 * @param {number} target
 * @return {boolean}
 */
var searchMatrix = function (matrix, target) {
    const n = matrix[0].length;
    for (const row of matrix) {
        let left = 0,
            right = n;
        while (left < right) {
            const mid = (left + right) >> 1;
            if (row[mid] >= target) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        if (left != n && row[left] == target) {
            return true;
        }
    }
    return false;
};

C#

public class Solution {
    public bool SearchMatrix(int[][] matrix, int target) {
        foreach (int[] row in matrix) {
            int j = Array.BinarySearch(row, target);
            if (j >= 0) {
                return true;
            }
        }
        return false;
    }
}

方法二:从左下角或右上角搜索

这里我们以左下角作为起始搜索点,往右上方向开始搜索,比较当前元素 matrix[i][j]target 的大小关系:

  • $\textit{matrix}[i][j] = \textit{target}$,说明找到了目标值,直接返回 true
  • $\textit{matrix}[i][j] &gt; \textit{target}$,说明这一列从当前位置开始往上的所有元素均大于 target,应该让 $i$ 指针往上移动,即 $i \leftarrow i - 1$
  • $\textit{matrix}[i][j] &lt; \textit{target}$,说明这一行从当前位置开始往右的所有元素均小于 target,应该让 $j$ 指针往右移动,即 $j \leftarrow j + 1$

若搜索结束依然找不到 target,返回 false

时间复杂度 $O(m + n)$,其中 $m$$n$ 分别为矩阵的行数和列数。空间复杂度 $O(1)$

Python3

class Solution:
    def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
        m, n = len(matrix), len(matrix[0])
        i, j = m - 1, 0
        while i >= 0 and j < n:
            if matrix[i][j] == target:
                return True
            if matrix[i][j] > target:
                i -= 1
            else:
                j += 1
        return False

Java

class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        int m = matrix.length, n = matrix[0].length;
        int i = m - 1, j = 0;
        while (i >= 0 && j < n) {
            if (matrix[i][j] == target) {
                return true;
            }
            if (matrix[i][j] > target) {
                --i;
            } else {
                ++j;
            }
        }
        return false;
    }
}

C++

class Solution {
public:
    bool searchMatrix(vector<vector<int>>& matrix, int target) {
        int m = matrix.size(), n = matrix[0].size();
        int i = m - 1, j = 0;
        while (i >= 0 && j < n) {
            if (matrix[i][j] == target) {
                return true;
            }
            if (matrix[i][j] > target) {
                --i;
            } else {
                ++j;
            }
        }
        return false;
    }
};

Go

func searchMatrix(matrix [][]int, target int) bool {
	m, n := len(matrix), len(matrix[0])
	i, j := m-1, 0
	for i >= 0 && j < n {
		if matrix[i][j] == target {
			return true
		}
		if matrix[i][j] > target {
			i--
		} else {
			j++
		}
	}
	return false
}

TypeScript

function searchMatrix(matrix: number[][], target: number): boolean {
    const [m, n] = [matrix.length, matrix[0].length];
    let [i, j] = [m - 1, 0];
    while (i >= 0 && j < n) {
        if (matrix[i][j] === target) {
            return true;
        }
        if (matrix[i][j] > target) {
            --i;
        } else {
            ++j;
        }
    }
    return false;
}

C#

public class Solution {
    public bool SearchMatrix(int[][] matrix, int target) {
        int m = matrix.Length, n = matrix[0].Length;
        int i = m - 1, j = 0;
        while (i >= 0 && j < n) {
            if (matrix[i][j] == target) {
                return true;
            }
            if (matrix[i][j] > target) {
                --i;
            } else {
                ++j;
            }
        }
        return false;
    }
}