Skip to content

Latest commit

 

History

History
137 lines (103 loc) · 2.56 KB

File metadata and controls

137 lines (103 loc) · 2.56 KB
comments difficulty edit_url tags
true
Easy
Bit Manipulation

中文文档

Description

The Hamming distance between two integers is the number of positions at which the corresponding bits are different.

Given two integers x and y, return the Hamming distance between them.

 

Example 1:

Input: x = 1, y = 4
Output: 2
Explanation:
1   (0 0 0 1)
4   (0 1 0 0)
       ↑   ↑
The above arrows point to positions where the corresponding bits are different.

Example 2:

Input: x = 3, y = 1
Output: 1

 

Constraints:

  • 0 <= x, y <= 231 - 1

 

Note: This question is the same as 2220: Minimum Bit Flips to Convert Number.

Solutions

Solution 1

Python3

class Solution:
    def hammingDistance(self, x: int, y: int) -> int:
        return (x ^ y).bit_count()

Java

class Solution {
    public int hammingDistance(int x, int y) {
        return Integer.bitCount(x ^ y);
    }
}

C++

class Solution {
public:
    int hammingDistance(int x, int y) {
        return __builtin_popcount(x ^ y);
    }
};

Go

func hammingDistance(x int, y int) int {
	return bits.OnesCount(uint(x ^ y))
}

TypeScript

function hammingDistance(x: number, y: number): number {
    x ^= y;
    let ans = 0;
    while (x) {
        x -= x & -x;
        ++ans;
    }
    return ans;
}

JavaScript

/**
 * @param {number} x
 * @param {number} y
 * @return {number}
 */
var hammingDistance = function (x, y) {
    x ^= y;
    let ans = 0;
    while (x) {
        x -= x & -x;
        ++ans;
    }
    return ans;
};