Skip to content

Latest commit

 

History

History
312 lines (257 loc) · 7.49 KB

File metadata and controls

312 lines (257 loc) · 7.49 KB
comments difficulty edit_url tags
true
Medium
Recursion
Array
Math
Dynamic Programming
Game Theory

中文文档

Description

You are given an integer array nums. Two players are playing a game with this array: player 1 and player 2.

Player 1 and player 2 take turns, with player 1 starting first. Both players start the game with a score of 0. At each turn, the player takes one of the numbers from either end of the array (i.e., nums[0] or nums[nums.length - 1]) which reduces the size of the array by 1. The player adds the chosen number to their score. The game ends when there are no more elements in the array.

Return true if Player 1 can win the game. If the scores of both players are equal, then player 1 is still the winner, and you should also return true. You may assume that both players are playing optimally.

 

Example 1:

Input: nums = [1,5,2]
Output: false
Explanation: Initially, player 1 can choose between 1 and 2. 
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2). 
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5. 
Hence, player 1 will never be the winner and you need to return false.

Example 2:

Input: nums = [1,5,233,7]
Output: true
Explanation: Player 1 first chooses 1. Then player 2 has to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.

 

Constraints:

  • 1 <= nums.length <= 20
  • 0 <= nums[i] <= 107

Solutions

Solution 1

Python3

class Solution:
    def PredictTheWinner(self, nums: List[int]) -> bool:
        @cache
        def dfs(i: int, j: int) -> int:
            if i > j:
                return 0
            return max(nums[i] - dfs(i + 1, j), nums[j] - dfs(i, j - 1))

        return dfs(0, len(nums) - 1) >= 0

Java

class Solution {
    private int[] nums;
    private int[][] f;

    public boolean PredictTheWinner(int[] nums) {
        this.nums = nums;
        int n = nums.length;
        f = new int[n][n];
        return dfs(0, n - 1) >= 0;
    }

    private int dfs(int i, int j) {
        if (i > j) {
            return 0;
        }
        if (f[i][j] != 0) {
            return f[i][j];
        }
        return f[i][j] = Math.max(nums[i] - dfs(i + 1, j), nums[j] - dfs(i, j - 1));
    }
}

C++

class Solution {
public:
    bool PredictTheWinner(vector<int>& nums) {
        int n = nums.size();
        int f[n][n];
        memset(f, 0, sizeof(f));
        function<int(int, int)> dfs = [&](int i, int j) -> int {
            if (i > j) {
                return 0;
            }
            if (f[i][j]) {
                return f[i][j];
            }
            return f[i][j] = max(nums[i] - dfs(i + 1, j), nums[j] - dfs(i, j - 1));
        };
        return dfs(0, n - 1) >= 0;
    }
};

Go

func PredictTheWinner(nums []int) bool {
	n := len(nums)
	f := make([][]int, n)
	for i := range f {
		f[i] = make([]int, n)
	}
	var dfs func(i, j int) int
	dfs = func(i, j int) int {
		if i > j {
			return 0
		}
		if f[i][j] == 0 {
			f[i][j] = max(nums[i]-dfs(i+1, j), nums[j]-dfs(i, j-1))
		}
		return f[i][j]
	}
	return dfs(0, n-1) >= 0
}

TypeScript

function PredictTheWinner(nums: number[]): boolean {
    const n = nums.length;
    const f: number[][] = new Array(n).fill(0).map(() => new Array(n).fill(0));
    const dfs = (i: number, j: number): number => {
        if (i > j) {
            return 0;
        }
        if (f[i][j] === 0) {
            f[i][j] = Math.max(nums[i] - dfs(i + 1, j), nums[j] - dfs(i, j - 1));
        }
        return f[i][j];
    };
    return dfs(0, n - 1) >= 0;
}

Rust

impl Solution {
    #[allow(dead_code)]
    pub fn predict_the_winner(nums: Vec<i32>) -> bool {
        let n = nums.len();
        let mut dp: Vec<Vec<i32>> = vec![vec![0; n]; n];

        // Initialize the dp vector
        for i in 0..n {
            dp[i][i] = nums[i];
        }

        // Begin the dp process
        for i in (0..n - 1).rev() {
            for j in i + 1..n {
                dp[i][j] = std::cmp::max(
                    // Take i-th num
                    nums[i] - dp[i + 1][j],
                    // Take j-th num
                    nums[j] - dp[i][j - 1],
                );
            }
        }

        dp[0][n - 1] >= 0
    }
}

Solution 2

Python3

class Solution:
    def PredictTheWinner(self, nums: List[int]) -> bool:
        n = len(nums)
        f = [[0] * n for _ in range(n)]
        for i, x in enumerate(nums):
            f[i][i] = x
        for i in range(n - 2, -1, -1):
            for j in range(i + 1, n):
                f[i][j] = max(nums[i] - f[i + 1][j], nums[j] - f[i][j - 1])
        return f[0][n - 1] >= 0

Java

class Solution {
    public boolean PredictTheWinner(int[] nums) {
        int n = nums.length;
        int[][] f = new int[n][n];
        for (int i = 0; i < n; ++i) {
            f[i][i] = nums[i];
        }
        for (int i = n - 2; i >= 0; --i) {
            for (int j = i + 1; j < n; ++j) {
                f[i][j] = Math.max(nums[i] - f[i + 1][j], nums[j] - f[i][j - 1]);
            }
        }
        return f[0][n - 1] >= 0;
    }
}

C++

class Solution {
public:
    bool PredictTheWinner(vector<int>& nums) {
        int n = nums.size();
        int f[n][n];
        memset(f, 0, sizeof(f));
        for (int i = 0; i < n; ++i) {
            f[i][i] = nums[i];
        }
        for (int i = n - 2; ~i; --i) {
            for (int j = i + 1; j < n; ++j) {
                f[i][j] = max(nums[i] - f[i + 1][j], nums[j] - f[i][j - 1]);
            }
        }
        return f[0][n - 1] >= 0;
    }
};

Go

func PredictTheWinner(nums []int) bool {
	n := len(nums)
	f := make([][]int, n)
	for i, x := range nums {
		f[i] = make([]int, n)
		f[i][i] = x
	}
	for i := n - 2; i >= 0; i-- {
		for j := i + 1; j < n; j++ {
			f[i][j] = max(nums[i]-f[i+1][j], nums[j]-f[i][j-1])
		}
	}
	return f[0][n-1] >= 0
}

TypeScript

function PredictTheWinner(nums: number[]): boolean {
    const n = nums.length;
    const f: number[][] = new Array(n).fill(0).map(() => new Array(n).fill(0));
    for (let i = 0; i < n; ++i) {
        f[i][i] = nums[i];
    }
    for (let i = n - 2; i >= 0; --i) {
        for (let j = i + 1; j < n; ++j) {
            f[i][j] = Math.max(nums[i] - f[i + 1][j], nums[j] - f[i][j - 1]);
        }
    }
    return f[0][n - 1] >= 0;
}