comments | difficulty | edit_url | tags | |||||
---|---|---|---|---|---|---|---|---|
true |
Medium |
|
You are given an integer array nums
. Two players are playing a game with this array: player 1 and player 2.
Player 1 and player 2 take turns, with player 1 starting first. Both players start the game with a score of 0
. At each turn, the player takes one of the numbers from either end of the array (i.e., nums[0]
or nums[nums.length - 1]
) which reduces the size of the array by 1
. The player adds the chosen number to their score. The game ends when there are no more elements in the array.
Return true
if Player 1 can win the game. If the scores of both players are equal, then player 1 is still the winner, and you should also return true
. You may assume that both players are playing optimally.
Example 1:
Input: nums = [1,5,2] Output: false Explanation: Initially, player 1 can choose between 1 and 2. If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2). So, final score of player 1 is 1 + 2 = 3, and player 2 is 5. Hence, player 1 will never be the winner and you need to return false.
Example 2:
Input: nums = [1,5,233,7] Output: true Explanation: Player 1 first chooses 1. Then player 2 has to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233. Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.
Constraints:
1 <= nums.length <= 20
0 <= nums[i] <= 107
class Solution:
def PredictTheWinner(self, nums: List[int]) -> bool:
@cache
def dfs(i: int, j: int) -> int:
if i > j:
return 0
return max(nums[i] - dfs(i + 1, j), nums[j] - dfs(i, j - 1))
return dfs(0, len(nums) - 1) >= 0
class Solution {
private int[] nums;
private int[][] f;
public boolean PredictTheWinner(int[] nums) {
this.nums = nums;
int n = nums.length;
f = new int[n][n];
return dfs(0, n - 1) >= 0;
}
private int dfs(int i, int j) {
if (i > j) {
return 0;
}
if (f[i][j] != 0) {
return f[i][j];
}
return f[i][j] = Math.max(nums[i] - dfs(i + 1, j), nums[j] - dfs(i, j - 1));
}
}
class Solution {
public:
bool PredictTheWinner(vector<int>& nums) {
int n = nums.size();
int f[n][n];
memset(f, 0, sizeof(f));
function<int(int, int)> dfs = [&](int i, int j) -> int {
if (i > j) {
return 0;
}
if (f[i][j]) {
return f[i][j];
}
return f[i][j] = max(nums[i] - dfs(i + 1, j), nums[j] - dfs(i, j - 1));
};
return dfs(0, n - 1) >= 0;
}
};
func PredictTheWinner(nums []int) bool {
n := len(nums)
f := make([][]int, n)
for i := range f {
f[i] = make([]int, n)
}
var dfs func(i, j int) int
dfs = func(i, j int) int {
if i > j {
return 0
}
if f[i][j] == 0 {
f[i][j] = max(nums[i]-dfs(i+1, j), nums[j]-dfs(i, j-1))
}
return f[i][j]
}
return dfs(0, n-1) >= 0
}
function PredictTheWinner(nums: number[]): boolean {
const n = nums.length;
const f: number[][] = new Array(n).fill(0).map(() => new Array(n).fill(0));
const dfs = (i: number, j: number): number => {
if (i > j) {
return 0;
}
if (f[i][j] === 0) {
f[i][j] = Math.max(nums[i] - dfs(i + 1, j), nums[j] - dfs(i, j - 1));
}
return f[i][j];
};
return dfs(0, n - 1) >= 0;
}
impl Solution {
#[allow(dead_code)]
pub fn predict_the_winner(nums: Vec<i32>) -> bool {
let n = nums.len();
let mut dp: Vec<Vec<i32>> = vec![vec![0; n]; n];
// Initialize the dp vector
for i in 0..n {
dp[i][i] = nums[i];
}
// Begin the dp process
for i in (0..n - 1).rev() {
for j in i + 1..n {
dp[i][j] = std::cmp::max(
// Take i-th num
nums[i] - dp[i + 1][j],
// Take j-th num
nums[j] - dp[i][j - 1],
);
}
}
dp[0][n - 1] >= 0
}
}
class Solution:
def PredictTheWinner(self, nums: List[int]) -> bool:
n = len(nums)
f = [[0] * n for _ in range(n)]
for i, x in enumerate(nums):
f[i][i] = x
for i in range(n - 2, -1, -1):
for j in range(i + 1, n):
f[i][j] = max(nums[i] - f[i + 1][j], nums[j] - f[i][j - 1])
return f[0][n - 1] >= 0
class Solution {
public boolean PredictTheWinner(int[] nums) {
int n = nums.length;
int[][] f = new int[n][n];
for (int i = 0; i < n; ++i) {
f[i][i] = nums[i];
}
for (int i = n - 2; i >= 0; --i) {
for (int j = i + 1; j < n; ++j) {
f[i][j] = Math.max(nums[i] - f[i + 1][j], nums[j] - f[i][j - 1]);
}
}
return f[0][n - 1] >= 0;
}
}
class Solution {
public:
bool PredictTheWinner(vector<int>& nums) {
int n = nums.size();
int f[n][n];
memset(f, 0, sizeof(f));
for (int i = 0; i < n; ++i) {
f[i][i] = nums[i];
}
for (int i = n - 2; ~i; --i) {
for (int j = i + 1; j < n; ++j) {
f[i][j] = max(nums[i] - f[i + 1][j], nums[j] - f[i][j - 1]);
}
}
return f[0][n - 1] >= 0;
}
};
func PredictTheWinner(nums []int) bool {
n := len(nums)
f := make([][]int, n)
for i, x := range nums {
f[i] = make([]int, n)
f[i][i] = x
}
for i := n - 2; i >= 0; i-- {
for j := i + 1; j < n; j++ {
f[i][j] = max(nums[i]-f[i+1][j], nums[j]-f[i][j-1])
}
}
return f[0][n-1] >= 0
}
function PredictTheWinner(nums: number[]): boolean {
const n = nums.length;
const f: number[][] = new Array(n).fill(0).map(() => new Array(n).fill(0));
for (let i = 0; i < n; ++i) {
f[i][i] = nums[i];
}
for (let i = n - 2; i >= 0; --i) {
for (let j = i + 1; j < n; ++j) {
f[i][j] = Math.max(nums[i] - f[i + 1][j], nums[j] - f[i][j - 1]);
}
}
return f[0][n - 1] >= 0;
}