comments | difficulty | edit_url | tags | |||
---|---|---|---|---|---|---|
true |
Medium |
|
A complex number can be represented as a string on the form "real+imaginaryi"
where:
real
is the real part and is an integer in the range[-100, 100]
.imaginary
is the imaginary part and is an integer in the range[-100, 100]
.i2 == -1
.
Given two complex numbers num1
and num2
as strings, return a string of the complex number that represents their multiplications.
Example 1:
Input: num1 = "1+1i", num2 = "1+1i" Output: "0+2i" Explanation: (1 + i) * (1 + i) = 1 + i2 + 2 * i = 2i, and you need convert it to the form of 0+2i.
Example 2:
Input: num1 = "1+-1i", num2 = "1+-1i" Output: "0+-2i" Explanation: (1 - i) * (1 - i) = 1 + i2 - 2 * i = -2i, and you need convert it to the form of 0+-2i.
Constraints:
num1
andnum2
are valid complex numbers.
We can convert the complex number string into its real part
The time complexity is
class Solution:
def complexNumberMultiply(self, num1: str, num2: str) -> str:
a1, b1 = map(int, num1[:-1].split("+"))
a2, b2 = map(int, num2[:-1].split("+"))
return f"{a1 * a2 - b1 * b2}+{a1 * b2 + a2 * b1}i"
class Solution {
public String complexNumberMultiply(String num1, String num2) {
int[] x = parse(num1);
int[] y = parse(num2);
int a1 = x[0], b1 = x[1], a2 = y[0], b2 = y[1];
return (a1 * a2 - b1 * b2) + "+" + (a1 * b2 + a2 * b1) + "i";
}
private int[] parse(String s) {
var cs = s.substring(0, s.length() - 1).split("\\+");
return new int[] {Integer.parseInt(cs[0]), Integer.parseInt(cs[1])};
}
}
class Solution {
public:
string complexNumberMultiply(string num1, string num2) {
int a1, b1, a2, b2;
sscanf(num1.c_str(), "%d+%di", &a1, &b1);
sscanf(num2.c_str(), "%d+%di", &a2, &b2);
return to_string(a1 * a2 - b1 * b2) + "+" + to_string(a1 * b2 + a2 * b1) + "i";
}
};
func complexNumberMultiply(num1 string, num2 string) string {
x, _ := strconv.ParseComplex(num1, 64)
y, _ := strconv.ParseComplex(num2, 64)
return fmt.Sprintf("%d+%di", int(real(x*y)), int(imag(x*y)))
}
function complexNumberMultiply(num1: string, num2: string): string {
const [a1, b1] = num1.slice(0, -1).split('+').map(Number);
const [a2, b2] = num2.slice(0, -1).split('+').map(Number);
return `${a1 * a2 - b1 * b2}+${a1 * b2 + a2 * b1}i`;
}