Skip to content

Latest commit

 

History

History
168 lines (134 loc) · 3.77 KB

File metadata and controls

168 lines (134 loc) · 3.77 KB
comments difficulty edit_url tags
true
Medium
Array
Hash Table
Prefix Sum

中文文档

Description

Given an array of integers nums and an integer k, return the total number of subarrays whose sum equals to k.

A subarray is a contiguous non-empty sequence of elements within an array.

 

Example 1:

Input: nums = [1,1,1], k = 2
Output: 2

Example 2:

Input: nums = [1,2,3], k = 3
Output: 2

 

Constraints:

  • 1 <= nums.length <= 2 * 104
  • -1000 <= nums[i] <= 1000
  • -107 <= k <= 107

Solutions

Solution 1: Hash Table + Prefix Sum

We define a hash table cnt to store the number of times the prefix sum of the array nums appears. Initially, we set the value of cnt[0] to 1, indicating that the prefix sum 0 appears once.

We traverse the array nums, calculate the prefix sum s, then add the value of cnt[s - k] to the answer, and increase the value of cnt[s] by 1.

After the traversal, we return the answer.

The time complexity is O(n), and the space complexity is O(n). Where n is the length of the array nums.

Python3

class Solution:
    def subarraySum(self, nums: List[int], k: int) -> int:
        cnt = Counter({0: 1})
        ans = s = 0
        for x in nums:
            s += x
            ans += cnt[s - k]
            cnt[s] += 1
        return ans

Java

class Solution {
    public int subarraySum(int[] nums, int k) {
        Map<Integer, Integer> cnt = new HashMap<>();
        cnt.put(0, 1);
        int ans = 0, s = 0;
        for (int x : nums) {
            s += x;
            ans += cnt.getOrDefault(s - k, 0);
            cnt.merge(s, 1, Integer::sum);
        }
        return ans;
    }
}

C++

class Solution {
public:
    int subarraySum(vector<int>& nums, int k) {
        unordered_map<int, int> cnt{{0, 1}};
        int ans = 0, s = 0;
        for (int x : nums) {
            s += x;
            ans += cnt[s - k];
            ++cnt[s];
        }
        return ans;
    }
};

Go

func subarraySum(nums []int, k int) (ans int) {
	cnt := map[int]int{0: 1}
	s := 0
	for _, x := range nums {
		s += x
		ans += cnt[s-k]
		cnt[s]++
	}
	return
}

TypeScript

function subarraySum(nums: number[], k: number): number {
    const cnt: Map<number, number> = new Map();
    cnt.set(0, 1);
    let [ans, s] = [0, 0];
    for (const x of nums) {
        s += x;
        ans += cnt.get(s - k) || 0;
        cnt.set(s, (cnt.get(s) || 0) + 1);
    }
    return ans;
}

Rust

use std::collections::HashMap;

impl Solution {
    pub fn subarray_sum(nums: Vec<i32>, k: i32) -> i32 {
        let mut cnt = HashMap::new();
        cnt.insert(0, 1);
        let mut ans = 0;
        let mut s = 0;
        for &x in &nums {
            s += x;
            if let Some(&v) = cnt.get(&(s - k)) {
                ans += v;
            }
            *cnt.entry(s).or_insert(0) += 1;
        }
        ans
    }
}