Skip to content

Latest commit

 

History

History
332 lines (269 loc) · 5.99 KB

File metadata and controls

332 lines (269 loc) · 5.99 KB
comments difficulty edit_url tags
true
Medium
Math
Dynamic Programming

中文文档

Description

There is only one character 'A' on the screen of a notepad. You can perform one of two operations on this notepad for each step:

  • Copy All: You can copy all the characters present on the screen (a partial copy is not allowed).
  • Paste: You can paste the characters which are copied last time.

Given an integer n, return the minimum number of operations to get the character 'A' exactly n times on the screen.

 

Example 1:

Input: n = 3
Output: 3
Explanation: Initially, we have one character 'A'.
In step 1, we use Copy All operation.
In step 2, we use Paste operation to get 'AA'.
In step 3, we use Paste operation to get 'AAA'.

Example 2:

Input: n = 1
Output: 0

 

Constraints:

  • 1 <= n <= 1000

Solutions

Solution 1

Python3

class Solution:
    def minSteps(self, n: int) -> int:
        @cache
        def dfs(n):
            if n == 1:
                return 0
            i, ans = 2, n
            while i * i <= n:
                if n % i == 0:
                    ans = min(ans, dfs(n // i) + i)
                i += 1
            return ans

        return dfs(n)

Java

class Solution {
    private int[] f;

    public int minSteps(int n) {
        f = new int[n + 1];
        Arrays.fill(f, -1);
        return dfs(n);
    }

    private int dfs(int n) {
        if (n == 1) {
            return 0;
        }
        if (f[n] != -1) {
            return f[n];
        }
        int ans = n;
        for (int i = 2; i * i <= n; ++i) {
            if (n % i == 0) {
                ans = Math.min(ans, dfs(n / i) + i);
            }
        }
        f[n] = ans;
        return ans;
    }
}

C++

class Solution {
public:
    vector<int> f;

    int minSteps(int n) {
        f.assign(n + 1, -1);
        return dfs(n);
    }

    int dfs(int n) {
        if (n == 1) return 0;
        if (f[n] != -1) return f[n];
        int ans = n;
        for (int i = 2; i * i <= n; ++i) {
            if (n % i == 0) {
                ans = min(ans, dfs(n / i) + i);
            }
        }
        f[n] = ans;
        return ans;
    }
};

Go

func minSteps(n int) int {
	f := make([]int, n+1)
	for i := range f {
		f[i] = -1
	}
	var dfs func(int) int
	dfs = func(n int) int {
		if n == 1 {
			return 0
		}
		if f[n] != -1 {
			return f[n]
		}
		ans := n
		for i := 2; i*i <= n; i++ {
			if n%i == 0 {
				ans = min(ans, dfs(n/i)+i)
			}
		}
		return ans
	}
	return dfs(n)
}

Solution 2

Python3

class Solution:
    def minSteps(self, n: int) -> int:
        dp = list(range(n + 1))
        dp[1] = 0
        for i in range(2, n + 1):
            j = 2
            while j * j <= i:
                if i % j == 0:
                    dp[i] = min(dp[i], dp[i // j] + j)
                j += 1
        return dp[-1]

Java

class Solution {
    public int minSteps(int n) {
        int[] dp = new int[n + 1];
        for (int i = 0; i < n + 1; ++i) {
            dp[i] = i;
        }
        dp[1] = 0;
        for (int i = 2; i < n + 1; ++i) {
            for (int j = 2; j * j <= i; ++j) {
                if (i % j == 0) {
                    dp[i] = Math.min(dp[i], dp[i / j] + j);
                }
            }
        }
        return dp[n];
    }
}

C++

class Solution {
public:
    int minSteps(int n) {
        vector<int> dp(n + 1);
        iota(dp.begin(), dp.end(), 0);
        dp[1] = 0;
        for (int i = 2; i < n + 1; ++i) {
            for (int j = 2; j * j <= i; ++j) {
                if (i % j == 0) {
                    dp[i] = min(dp[i], dp[i / j] + j);
                }
            }
        }
        return dp[n];
    }
};

Go

func minSteps(n int) int {
	dp := make([]int, n+1)
	for i := range dp {
		dp[i] = i
	}
	dp[1] = 0
	for i := 2; i < n+1; i++ {
		for j := 2; j*j <= i; j++ {
			if i%j == 0 {
				dp[i] = min(dp[i], dp[i/j]+j)
			}
		}
	}
	return dp[n]
}

TypeScript

function minSteps(n: number): number {
    const dp = Array(n + 1).fill(1000);
    dp[1] = 0;

    for (let i = 2; i <= n; i++) {
        for (let j = 1, half = i / 2; j <= half; j++) {
            if (i % j === 0) {
                dp[i] = Math.min(dp[i], dp[j] + i / j);
            }
        }
    }

    return dp[n];
}

JavaScript

/**
 * @param {number} n
 * @return {number}
 */
var minSteps = function (n) {
    const dp = Array(n + 1).fill(1000);
    dp[1] = 0;

    for (let i = 2; i <= n; i++) {
        for (let j = 1, half = i / 2; j <= half; j++) {
            if (i % j === 0) {
                dp[i] = Math.min(dp[i], dp[j] + i / j);
            }
        }
    }

    return dp[n];
};

Solution 3

Java

class Solution {
    public int minSteps(int n) {
        int res = 0;
        for (int i = 2; n > 1; ++i) {
            while (n % i == 0) {
                res += i;
                n /= i;
            }
        }
        return res;
    }
}