comments | difficulty | edit_url | tags | |
---|---|---|---|---|
true |
Easy |
|
A self-dividing number is a number that is divisible by every digit it contains.
- For example,
128
is a self-dividing number because128 % 1 == 0
,128 % 2 == 0
, and128 % 8 == 0
.
A self-dividing number is not allowed to contain the digit zero.
Given two integers left
and right
, return a list of all the self-dividing numbers in the range [left, right]
(both inclusive).
Example 1:
Input: left = 1, right = 22 Output: [1,2,3,4,5,6,7,8,9,11,12,15,22]
Example 2:
Input: left = 47, right = 85 Output: [48,55,66,77]
Constraints:
1 <= left <= right <= 104
We define a function
We use
Finally, we traverse all the numbers in the interval
The time complexity is
class Solution:
def selfDividingNumbers(self, left: int, right: int) -> List[int]:
def check(x: int) -> bool:
y = x
while y:
if y % 10 == 0 or x % (y % 10):
return False
y //= 10
return True
return [x for x in range(left, right + 1) if check(x)]
class Solution {
public List<Integer> selfDividingNumbers(int left, int right) {
List<Integer> ans = new ArrayList<>();
for (int x = left; x <= right; ++x) {
if (check(x)) {
ans.add(x);
}
}
return ans;
}
private boolean check(int x) {
for (int y = x; y > 0; y /= 10) {
if (y % 10 == 0 || x % (y % 10) != 0) {
return false;
}
}
return true;
}
}
class Solution {
public:
vector<int> selfDividingNumbers(int left, int right) {
auto check = [&](int x) -> bool {
for (int y = x; y; y /= 10) {
if (y % 10 == 0 || x % (y % 10)) {
return false;
}
}
return true;
};
vector<int> ans;
for (int x = left; x <= right; ++x) {
if (check(x)) {
ans.push_back(x);
}
}
return ans;
}
};
func selfDividingNumbers(left int, right int) (ans []int) {
check := func(x int) bool {
for y := x; y > 0; y /= 10 {
if y%10 == 0 || x%(y%10) != 0 {
return false
}
}
return true
}
for x := left; x <= right; x++ {
if check(x) {
ans = append(ans, x)
}
}
return
}
function selfDividingNumbers(left: number, right: number): number[] {
const check = (x: number): boolean => {
for (let y = x; y; y = Math.floor(y / 10)) {
if (y % 10 === 0 || x % (y % 10) !== 0) {
return false;
}
}
return true;
};
return Array.from({ length: right - left + 1 }, (_, i) => i + left).filter(check);
}
impl Solution {
pub fn self_dividing_numbers(left: i32, right: i32) -> Vec<i32> {
fn check(x: i32) -> bool {
let mut y = x;
while y > 0 {
if y % 10 == 0 || x % (y % 10) != 0 {
return false;
}
y /= 10;
}
true
}
(left..=right).filter(|&x| check(x)).collect()
}
}