comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Medium |
|
You are given an integer n
. You have an n x n
binary grid grid
with all values initially 1
's except for some indices given in the array mines
. The ith
element of the array mines
is defined as mines[i] = [xi, yi]
where grid[xi][yi] == 0
.
Return the order of the largest axis-aligned plus sign of 1's contained in grid
. If there is none, return 0
.
An axis-aligned plus sign of 1
's of order k
has some center grid[r][c] == 1
along with four arms of length k - 1
going up, down, left, and right, and made of 1
's. Note that there could be 0
's or 1
's beyond the arms of the plus sign, only the relevant area of the plus sign is checked for 1
's.
Example 1:
Input: n = 5, mines = [[4,2]] Output: 2 Explanation: In the above grid, the largest plus sign can only be of order 2. One of them is shown.
Example 2:
Input: n = 1, mines = [[0,0]] Output: 0 Explanation: There is no plus sign, so return 0.
Constraints:
1 <= n <= 500
1 <= mines.length <= 5000
0 <= xi, yi < n
- All the pairs
(xi, yi)
are unique.
class Solution:
def orderOfLargestPlusSign(self, n: int, mines: List[List[int]]) -> int:
dp = [[n] * n for _ in range(n)]
for x, y in mines:
dp[x][y] = 0
for i in range(n):
left = right = up = down = 0
for j, k in zip(range(n), reversed(range(n))):
left = left + 1 if dp[i][j] else 0
right = right + 1 if dp[i][k] else 0
up = up + 1 if dp[j][i] else 0
down = down + 1 if dp[k][i] else 0
dp[i][j] = min(dp[i][j], left)
dp[i][k] = min(dp[i][k], right)
dp[j][i] = min(dp[j][i], up)
dp[k][i] = min(dp[k][i], down)
return max(max(v) for v in dp)
class Solution {
public int orderOfLargestPlusSign(int n, int[][] mines) {
int[][] dp = new int[n][n];
for (var e : dp) {
Arrays.fill(e, n);
}
for (var e : mines) {
dp[e[0]][e[1]] = 0;
}
for (int i = 0; i < n; ++i) {
int left = 0, right = 0, up = 0, down = 0;
for (int j = 0, k = n - 1; j < n; ++j, --k) {
left = dp[i][j] > 0 ? left + 1 : 0;
right = dp[i][k] > 0 ? right + 1 : 0;
up = dp[j][i] > 0 ? up + 1 : 0;
down = dp[k][i] > 0 ? down + 1 : 0;
dp[i][j] = Math.min(dp[i][j], left);
dp[i][k] = Math.min(dp[i][k], right);
dp[j][i] = Math.min(dp[j][i], up);
dp[k][i] = Math.min(dp[k][i], down);
}
}
return Arrays.stream(dp).flatMapToInt(Arrays::stream).max().getAsInt();
}
}
class Solution {
public:
int orderOfLargestPlusSign(int n, vector<vector<int>>& mines) {
vector<vector<int>> dp(n, vector<int>(n, n));
for (auto& e : mines) dp[e[0]][e[1]] = 0;
for (int i = 0; i < n; ++i) {
int left = 0, right = 0, up = 0, down = 0;
for (int j = 0, k = n - 1; j < n; ++j, --k) {
left = dp[i][j] ? left + 1 : 0;
right = dp[i][k] ? right + 1 : 0;
up = dp[j][i] ? up + 1 : 0;
down = dp[k][i] ? down + 1 : 0;
dp[i][j] = min(dp[i][j], left);
dp[i][k] = min(dp[i][k], right);
dp[j][i] = min(dp[j][i], up);
dp[k][i] = min(dp[k][i], down);
}
}
int ans = 0;
for (auto& e : dp) ans = max(ans, *max_element(e.begin(), e.end()));
return ans;
}
};
func orderOfLargestPlusSign(n int, mines [][]int) (ans int) {
dp := make([][]int, n)
for i := range dp {
dp[i] = make([]int, n)
for j := range dp[i] {
dp[i][j] = n
}
}
for _, e := range mines {
dp[e[0]][e[1]] = 0
}
for i := 0; i < n; i++ {
var left, right, up, down int
for j, k := 0, n-1; j < n; j, k = j+1, k-1 {
left, right, up, down = left+1, right+1, up+1, down+1
if dp[i][j] == 0 {
left = 0
}
if dp[i][k] == 0 {
right = 0
}
if dp[j][i] == 0 {
up = 0
}
if dp[k][i] == 0 {
down = 0
}
dp[i][j] = min(dp[i][j], left)
dp[i][k] = min(dp[i][k], right)
dp[j][i] = min(dp[j][i], up)
dp[k][i] = min(dp[k][i], down)
}
}
for _, e := range dp {
ans = max(ans, slices.Max(e))
}
return
}