Skip to content

Latest commit

 

History

History
185 lines (150 loc) · 4.14 KB

README_EN.md

File metadata and controls

185 lines (150 loc) · 4.14 KB
comments difficulty edit_url tags
true
Easy
Bit Manipulation

中文文档

Description

Given a positive integer n, find and return the longest distance between any two adjacent 1's in the binary representation of n. If there are no two adjacent 1's, return 0.

Two 1's are adjacent if there are only 0's separating them (possibly no 0's). The distance between two 1's is the absolute difference between their bit positions. For example, the two 1's in "1001" have a distance of 3.

 

Example 1:

Input: n = 22
Output: 2
Explanation: 22 in binary is "10110".
The first adjacent pair of 1's is "10110" with a distance of 2.
The second adjacent pair of 1's is "10110" with a distance of 1.
The answer is the largest of these two distances, which is 2.
Note that "10110" is not a valid pair since there is a 1 separating the two 1's underlined.

Example 2:

Input: n = 8
Output: 0
Explanation: 8 in binary is "1000".
There are not any adjacent pairs of 1's in the binary representation of 8, so we return 0.

Example 3:

Input: n = 5
Output: 2
Explanation: 5 in binary is "101".

 

Constraints:

  • 1 <= n <= 109

Solutions

Solution 1

Python3

class Solution:
    def binaryGap(self, n: int) -> int:
        ans, j = 0, -1
        for i in range(32):
            if n & 1:
                if j != -1:
                    ans = max(ans, i - j)
                j = i
            n >>= 1
        return ans

Java

class Solution {
    public int binaryGap(int n) {
        int ans = 0;
        for (int i = 0, j = -1; n != 0; ++i, n >>= 1) {
            if ((n & 1) == 1) {
                if (j != -1) {
                    ans = Math.max(ans, i - j);
                }
                j = i;
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    int binaryGap(int n) {
        int ans = 0;
        for (int i = 0, j = -1; n; ++i, n >>= 1) {
            if (n & 1) {
                if (j != -1) ans = max(ans, i - j);
                j = i;
            }
        }
        return ans;
    }
};

Go

func binaryGap(n int) int {
	ans := 0
	for i, j := 0, -1; n != 0; i, n = i+1, n>>1 {
		if (n & 1) == 1 {
			if j != -1 && ans < i-j {
				ans = i - j
			}
			j = i
		}
	}
	return ans
}

TypeScript

function binaryGap(n: number): number {
    let res = 0;
    let j = -1;
    for (let i = 0; n !== 0; i++) {
        if (n & 1) {
            if (j !== -1) {
                res = Math.max(res, i - j);
            }
            j = i;
        }
        n >>= 1;
    }
    return res;
}

Rust

impl Solution {
    pub fn binary_gap(mut n: i32) -> i32 {
        let mut res = 0;
        let mut i = 0;
        let mut j = -1;
        while n != 0 {
            if (n & 1) == 1 {
                if j != -1 {
                    res = res.max(i - j);
                }
                j = i;
            }
            n >>= 1;
            i += 1;
        }
        res
    }
}