Skip to content

Latest commit

 

History

History
270 lines (219 loc) · 7.59 KB

File metadata and controls

270 lines (219 loc) · 7.59 KB
comments difficulty edit_url tags
true
困难
贪心
数组
动态规划
堆(优先队列)

English Version

题目描述

汽车从起点出发驶向目的地,该目的地位于出发位置东面 target 英里处。

沿途有加油站,用数组 stations 表示。其中 stations[i] = [positioni, fueli] 表示第 i 个加油站位于出发位置东面 positioni 英里处,并且有 fueli 升汽油。

假设汽车油箱的容量是无限的,其中最初有 startFuel 升燃料。它每行驶 1 英里就会用掉 1 升汽油。当汽车到达加油站时,它可能停下来加油,将所有汽油从加油站转移到汽车中。

为了到达目的地,汽车所必要的最低加油次数是多少?如果无法到达目的地,则返回 -1

注意:如果汽车到达加油站时剩余燃料为 0,它仍然可以在那里加油。如果汽车到达目的地时剩余燃料为 0,仍然认为它已经到达目的地。

 

示例 1:

输入:target = 1, startFuel = 1, stations = []
输出:0
解释:可以在不加油的情况下到达目的地。

示例 2:

输入:target = 100, startFuel = 1, stations = [[10,100]]
输出:-1
解释:无法抵达目的地,甚至无法到达第一个加油站。

示例 3:

输入:target = 100, startFuel = 10, stations = [[10,60],[20,30],[30,30],[60,40]]
输出:2
解释:
出发时有 10 升燃料。
开车来到距起点 10 英里处的加油站,消耗 10 升燃料。将汽油从 0 升加到 60 升。
然后,从 10 英里处的加油站开到 60 英里处的加油站(消耗 50 升燃料),
并将汽油从 10 升加到 50 升。然后开车抵达目的地。
沿途在两个加油站停靠,所以返回 2 。

 

提示:

  • 1 <= target, startFuel <= 109
  • 0 <= stations.length <= 500
  • 1 <= positioni < positioni+1 < target
  • 1 <= fueli < 109

解法

方法一:贪心 + 优先队列(大根堆)

我们可以利用优先队列(大根堆) $\textit{pq}$ 记录所有已经到达过的加油站的加油量,每次当油量不足时,贪心地取出最大加油量,即 $\textit{pq}$ 的堆顶元素,并累计加油次数 $\textit{ans}$。如果 $\textit{pq}$ 为空并且当前油量仍然不足,说明无法到达目的地,返回 $-1$

时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 表示加油站的数量。

Python3

class Solution:
    def minRefuelStops(
        self, target: int, startFuel: int, stations: List[List[int]]
    ) -> int:
        pq = []
        ans = pre = 0
        stations.append([target, 0])
        for pos, fuel in stations:
            dist = pos - pre
            startFuel -= dist
            while startFuel < 0 and pq:
                startFuel -= heappop(pq)
                ans += 1
            if startFuel < 0:
                return -1
            heappush(pq, -fuel)
            pre = pos
        return ans

Java

class Solution {
    public int minRefuelStops(int target, int startFuel, int[][] stations) {
        PriorityQueue<Integer> pq = new PriorityQueue<>((a, b) -> b - a);
        int n = stations.length;
        int ans = 0, pre = 0;
        for (int i = 0; i <= n; ++i) {
            int pos = i < n ? stations[i][0] : target;
            int dist = pos - pre;
            startFuel -= dist;
            while (startFuel < 0 && !pq.isEmpty()) {
                startFuel += pq.poll();
                ++ans;
            }
            if (startFuel < 0) {
                return -1;
            }
            if (i < n) {
                pq.offer(stations[i][1]);
                pre = stations[i][0];
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    int minRefuelStops(int target, int startFuel, vector<vector<int>>& stations) {
        priority_queue<int> pq;
        stations.push_back({target, 0});
        int ans = 0, pre = 0;
        for (const auto& station : stations) {
            int pos = station[0], fuel = station[1];
            int dist = pos - pre;
            startFuel -= dist;
            while (startFuel < 0 && !pq.empty()) {
                startFuel += pq.top();
                pq.pop();
                ++ans;
            }
            if (startFuel < 0) {
                return -1;
            }
            pq.push(fuel);
            pre = pos;
        }
        return ans;
    }
};

Go

func minRefuelStops(target int, startFuel int, stations [][]int) int {
	pq := &hp{}
	ans, pre := 0, 0
	stations = append(stations, []int{target, 0})
	for _, station := range stations {
		pos, fuel := station[0], station[1]
		dist := pos - pre
		startFuel -= dist
		for startFuel < 0 && pq.Len() > 0 {
			startFuel += heap.Pop(pq).(int)
			ans++
		}
		if startFuel < 0 {
			return -1
		}
		heap.Push(pq, fuel)
		pre = pos
	}
	return ans
}

type hp struct{ sort.IntSlice }

func (h hp) Less(i, j int) bool { return h.IntSlice[i] > h.IntSlice[j] }
func (h *hp) Push(v any)        { h.IntSlice = append(h.IntSlice, v.(int)) }
func (h *hp) Pop() any {
	a := h.IntSlice
	v := a[len(a)-1]
	h.IntSlice = a[:len(a)-1]
	return v
}

TypeScript

function minRefuelStops(target: number, startFuel: number, stations: number[][]): number {
    const pq = new MaxPriorityQueue();
    let [ans, pre] = [0, 0];
    stations.push([target, 0]);
    for (const [pos, fuel] of stations) {
        const dist = pos - pre;
        startFuel -= dist;
        while (startFuel < 0 && !pq.isEmpty()) {
            startFuel += pq.dequeue().element;
            ans++;
        }
        if (startFuel < 0) {
            return -1;
        }
        pq.enqueue(fuel);
        pre = pos;
    }
    return ans;
}

Rust

use std::collections::BinaryHeap;

impl Solution {
    pub fn min_refuel_stops(target: i32, mut start_fuel: i32, mut stations: Vec<Vec<i32>>) -> i32 {
        let mut pq = BinaryHeap::new();
        let mut ans = 0;
        let mut pre = 0;

        stations.push(vec![target, 0]);

        for station in stations {
            let pos = station[0];
            let fuel = station[1];
            let dist = pos - pre;
            start_fuel -= dist;

            while start_fuel < 0 && !pq.is_empty() {
                start_fuel += pq.pop().unwrap();
                ans += 1;
            }

            if start_fuel < 0 {
                return -1;
            }

            pq.push(fuel);
            pre = pos;
        }

        ans
    }
}