comments | difficulty | edit_url | tags | ||||
---|---|---|---|---|---|---|---|
true |
Medium |
|
You are given an integer array nums
and an integer k
.
For each index i
where 0 <= i < nums.length
, change nums[i]
to be either nums[i] + k
or nums[i] - k
.
The score of nums
is the difference between the maximum and minimum elements in nums
.
Return the minimum score of nums
after changing the values at each index.
Example 1:
Input: nums = [1], k = 0 Output: 0 Explanation: The score is max(nums) - min(nums) = 1 - 1 = 0.
Example 2:
Input: nums = [0,10], k = 2 Output: 6 Explanation: Change nums to be [2, 8]. The score is max(nums) - min(nums) = 8 - 2 = 6.
Example 3:
Input: nums = [1,3,6], k = 3 Output: 3 Explanation: Change nums to be [4, 6, 3]. The score is max(nums) - min(nums) = 6 - 3 = 3.
Constraints:
1 <= nums.length <= 104
0 <= nums[i] <= 104
0 <= k <= 104
According to the problem requirements, we need to find the minimum difference between the maximum and minimum values in the array. Each element can be increased or decreased by
Therefore, we can first sort the array, then enumerate each element in the array, divide it into two parts, one part increased by
The time complexity is
class Solution:
def smallestRangeII(self, nums: List[int], k: int) -> int:
nums.sort()
ans = nums[-1] - nums[0]
for i in range(1, len(nums)):
mi = min(nums[0] + k, nums[i] - k)
mx = max(nums[i - 1] + k, nums[-1] - k)
ans = min(ans, mx - mi)
return ans
class Solution {
public int smallestRangeII(int[] nums, int k) {
Arrays.sort(nums);
int n = nums.length;
int ans = nums[n - 1] - nums[0];
for (int i = 1; i < n; ++i) {
int mi = Math.min(nums[0] + k, nums[i] - k);
int mx = Math.max(nums[i - 1] + k, nums[n - 1] - k);
ans = Math.min(ans, mx - mi);
}
return ans;
}
}
class Solution {
public:
int smallestRangeII(vector<int>& nums, int k) {
sort(nums.begin(), nums.end());
int n = nums.size();
int ans = nums[n - 1] - nums[0];
for (int i = 1; i < n; ++i) {
int mi = min(nums[0] + k, nums[i] - k);
int mx = max(nums[i - 1] + k, nums[n - 1] - k);
ans = min(ans, mx - mi);
}
return ans;
}
};
func smallestRangeII(nums []int, k int) int {
sort.Ints(nums)
n := len(nums)
ans := nums[n-1] - nums[0]
for i := 1; i < n; i++ {
mi := min(nums[0]+k, nums[i]-k)
mx := max(nums[i-1]+k, nums[n-1]-k)
ans = min(ans, mx-mi)
}
return ans
}
function smallestRangeII(nums: number[], k: number): number {
nums.sort((a, b) => a - b);
let ans = nums.at(-1)! - nums[0];
for (let i = 1; i < nums.length; ++i) {
const mi = Math.min(nums[0] + k, nums[i] - k);
const mx = Math.max(nums.at(-1)! - k, nums[i - 1] + k);
ans = Math.min(ans, mx - mi);
}
return ans;
}