Skip to content

Latest commit

 

History

History
189 lines (149 loc) · 4.7 KB

File metadata and controls

189 lines (149 loc) · 4.7 KB
comments difficulty edit_url tags
true
Medium
String
Dynamic Programming

中文文档

Description

A binary string is monotone increasing if it consists of some number of 0's (possibly none), followed by some number of 1's (also possibly none).

You are given a binary string s. You can flip s[i] changing it from 0 to 1 or from 1 to 0.

Return the minimum number of flips to make s monotone increasing.

 

Example 1:

Input: s = "00110"
Output: 1
Explanation: We flip the last digit to get 00111.

Example 2:

Input: s = "010110"
Output: 2
Explanation: We flip to get 011111, or alternatively 000111.

Example 3:

Input: s = "00011000"
Output: 2
Explanation: We flip to get 00000000.

 

Constraints:

  • 1 <= s.length <= 105
  • s[i] is either '0' or '1'.

Solutions

Solution 1: Prefix Sum + Enumeration

First, we count the number of '0's in string $s$, denoted as $tot$. We define a variable $ans$ for the answer, initially set $ans = tot$, which represents the number of flips to change all '0's to '1's.

Then, we can enumerate each position $i$, change all '1's to the left of position $i$ (including $i$) to '0', and change all '0's to the right of position $i$ to '1'. We calculate the number of flips in this case, which is $i + 1 - cur + tot - cur$, where $cur$ represents the number of '0's to the left of position $i$ (including $i$). We update the answer $ans = \min(ans, i + 1 - cur + tot - cur)$.

Finally, return the answer $ans$.

The time complexity is $O(n)$, where $n$ is the length of the string $s$. The space complexity is $O(1)$.

Python3

class Solution:
    def minFlipsMonoIncr(self, s: str) -> int:
        tot = s.count("0")
        ans, cur = tot, 0
        for i, c in enumerate(s, 1):
            cur += int(c == "0")
            ans = min(ans, i - cur + tot - cur)
        return ans

Java

class Solution {
    public int minFlipsMonoIncr(String s) {
        int n = s.length();
        int tot = 0;
        for (int i = 0; i < n; ++i) {
            if (s.charAt(i) == '0') {
                ++tot;
            }
        }
        int ans = tot, cur = 0;
        for (int i = 1; i <= n; ++i) {
            if (s.charAt(i - 1) == '0') {
                ++cur;
            }
            ans = Math.min(ans, i - cur + tot - cur);
        }
        return ans;
    }
}

C++

class Solution {
public:
    int minFlipsMonoIncr(string s) {
        int tot = count(s.begin(), s.end(), '0');
        int ans = tot, cur = 0;
        for (int i = 1; i <= s.size(); ++i) {
            cur += s[i - 1] == '0';
            ans = min(ans, i - cur + tot - cur);
        }
        return ans;
    }
};

Go

func minFlipsMonoIncr(s string) int {
	tot := strings.Count(s, "0")
	ans, cur := tot, 0
	for i, c := range s {
		if c == '0' {
			cur++
		}
		ans = min(ans, i+1-cur+tot-cur)
	}
	return ans
}

TypeScript

function minFlipsMonoIncr(s: string): number {
    let tot = 0;
    for (const c of s) {
        tot += c === '0' ? 1 : 0;
    }
    let [ans, cur] = [tot, 0];
    for (let i = 1; i <= s.length; ++i) {
        cur += s[i - 1] === '0' ? 1 : 0;
        ans = Math.min(ans, i - cur + tot - cur);
    }
    return ans;
}

JavaScript

/**
 * @param {string} s
 * @return {number}
 */
var minFlipsMonoIncr = function (s) {
    let tot = 0;
    for (const c of s) {
        tot += c === '0' ? 1 : 0;
    }
    let [ans, cur] = [tot, 0];
    for (let i = 1; i <= s.length; ++i) {
        cur += s[i - 1] === '0' ? 1 : 0;
        ans = Math.min(ans, i - cur + tot - cur);
    }
    return ans;
};