Skip to content

Latest commit

 

History

History
235 lines (196 loc) · 5.54 KB

File metadata and controls

235 lines (196 loc) · 5.54 KB
comments difficulty edit_url tags
true
Medium
Breadth-First Search
Backtracking

中文文档

Description

Given two integers n and k, return an array of all the integers of length n where the difference between every two consecutive digits is k. You may return the answer in any order.

Note that the integers should not have leading zeros. Integers as 02 and 043 are not allowed.

 

Example 1:

Input: n = 3, k = 7
Output: [181,292,707,818,929]
Explanation: Note that 070 is not a valid number, because it has leading zeroes.

Example 2:

Input: n = 2, k = 1
Output: [10,12,21,23,32,34,43,45,54,56,65,67,76,78,87,89,98]

 

Constraints:

  • 2 <= n <= 9
  • 0 <= k <= 9

Solutions

Solution 1: DFS

We can enumerate the first digit of all numbers of length $n$, and then use the depth-first search method to recursively construct all numbers that meet the conditions.

Specifically, we first define a boundary value $\textit{boundary} = 10^{n-1}$, which represents the minimum value of the number we need to construct. Then, we enumerate the first digit from $1$ to $9$. For each digit $i$, we recursively construct the number of length $n$ with $i$ as the first digit.

The time complexity is $(n \times 2^n \times |\Sigma|)$, where $|\Sigma|$ represents the set of digits, and in this problem $|\Sigma| = 9$. The space complexity is $O(2^n)$.

Python3

class Solution:
    def numsSameConsecDiff(self, n: int, k: int) -> List[int]:
        def dfs(x: int):
            if x >= boundary:
                ans.append(x)
                return
            last = x % 10
            if last + k <= 9:
                dfs(x * 10 + last + k)
            if last - k >= 0 and k != 0:
                dfs(x * 10 + last - k)

        ans = []
        boundary = 10 ** (n - 1)
        for i in range(1, 10):
            dfs(i)
        return ans

Java

class Solution {
    private List<Integer> ans = new ArrayList<>();
    private int boundary;
    private int k;

    public int[] numsSameConsecDiff(int n, int k) {
        this.k = k;
        boundary = (int) Math.pow(10, n - 1);
        for (int i = 1; i < 10; ++i) {
            dfs(i);
        }
        return ans.stream().mapToInt(i -> i).toArray();
    }

    private void dfs(int x) {
        if (x >= boundary) {
            ans.add(x);
            return;
        }
        int last = x % 10;
        if (last + k < 10) {
            dfs(x * 10 + last + k);
        }
        if (k != 0 && last - k >= 0) {
            dfs(x * 10 + last - k);
        }
    }
}

C++

class Solution {
public:
    vector<int> numsSameConsecDiff(int n, int k) {
        vector<int> ans;
        int boundary = pow(10, n - 1);
        auto dfs = [&](auto&& dfs, int x) {
            if (x >= boundary) {
                ans.push_back(x);
                return;
            }
            int last = x % 10;
            if (last + k < 10) {
                dfs(dfs, x * 10 + last + k);
            }
            if (k != 0 && last - k >= 0) {
                dfs(dfs, x * 10 + last - k);
            }
        };
        for (int i = 1; i < 10; ++i) {
            dfs(dfs, i);
        }
        return ans;
    }
};

Go

func numsSameConsecDiff(n int, k int) (ans []int) {
	bounary := int(math.Pow10(n - 1))
	var dfs func(int)
	dfs = func(x int) {
		if x >= bounary {
			ans = append(ans, x)
			return
		}
		last := x % 10
		if last+k < 10 {
			dfs(x*10 + last + k)
		}
		if k > 0 && last-k >= 0 {
			dfs(x*10 + last - k)
		}
	}
	for i := 1; i < 10; i++ {
		dfs(i)
	}
	return
}

TypeScript

function numsSameConsecDiff(n: number, k: number): number[] {
    const ans: number[] = [];
    const boundary = 10 ** (n - 1);
    const dfs = (x: number) => {
        if (x >= boundary) {
            ans.push(x);
            return;
        }
        const last = x % 10;
        if (last + k < 10) {
            dfs(x * 10 + last + k);
        }
        if (k > 0 && last - k >= 0) {
            dfs(x * 10 + last - k);
        }
    };
    for (let i = 1; i < 10; i++) {
        dfs(i);
    }
    return ans;
}

JavaScript

/**
 * @param {number} n
 * @param {number} k
 * @return {number[]}
 */
var numsSameConsecDiff = function (n, k) {
    const ans = [];
    const boundary = 10 ** (n - 1);
    const dfs = x => {
        if (x >= boundary) {
            ans.push(x);
            return;
        }
        const last = x % 10;
        if (last + k < 10) {
            dfs(x * 10 + last + k);
        }
        if (k > 0 && last - k >= 0) {
            dfs(x * 10 + last - k);
        }
    };
    for (let i = 1; i < 10; i++) {
        dfs(i);
    }
    return ans;
};