Skip to content

Latest commit

 

History

History
232 lines (201 loc) · 5.57 KB

File metadata and controls

232 lines (201 loc) · 5.57 KB
comments difficulty edit_url tags
true
Hard
Bit Manipulation
Array
Hash Table
Math
Dynamic Programming
Backtracking
Bitmask

中文文档

Description

An array is squareful if the sum of every pair of adjacent elements is a perfect square.

Given an integer array nums, return the number of permutations of nums that are squareful.

Two permutations perm1 and perm2 are different if there is some index i such that perm1[i] != perm2[i].

 

Example 1:

Input: nums = [1,17,8]
Output: 2
Explanation: [1,8,17] and [17,8,1] are the valid permutations.

Example 2:

Input: nums = [2,2,2]
Output: 1

 

Constraints:

  • 1 <= nums.length <= 12
  • 0 <= nums[i] <= 109

Solutions

Solution 1

Python3

class Solution:
    def numSquarefulPerms(self, nums: List[int]) -> int:
        n = len(nums)
        f = [[0] * n for _ in range(1 << n)]
        for j in range(n):
            f[1 << j][j] = 1
        for i in range(1 << n):
            for j in range(n):
                if i >> j & 1:
                    for k in range(n):
                        if (i >> k & 1) and k != j:
                            s = nums[j] + nums[k]
                            t = int(sqrt(s))
                            if t * t == s:
                                f[i][j] += f[i ^ (1 << j)][k]

        ans = sum(f[(1 << n) - 1][j] for j in range(n))
        for v in Counter(nums).values():
            ans //= factorial(v)
        return ans

Java

class Solution {
    public int numSquarefulPerms(int[] nums) {
        int n = nums.length;
        int[][] f = new int[1 << n][n];
        for (int j = 0; j < n; ++j) {
            f[1 << j][j] = 1;
        }
        for (int i = 0; i < 1 << n; ++i) {
            for (int j = 0; j < n; ++j) {
                if ((i >> j & 1) == 1) {
                    for (int k = 0; k < n; ++k) {
                        if ((i >> k & 1) == 1 && k != j) {
                            int s = nums[j] + nums[k];
                            int t = (int) Math.sqrt(s);
                            if (t * t == s) {
                                f[i][j] += f[i ^ (1 << j)][k];
                            }
                        }
                    }
                }
            }
        }
        long ans = 0;
        for (int j = 0; j < n; ++j) {
            ans += f[(1 << n) - 1][j];
        }
        Map<Integer, Integer> cnt = new HashMap<>();
        for (int x : nums) {
            cnt.merge(x, 1, Integer::sum);
        }
        int[] g = new int[13];
        g[0] = 1;
        for (int i = 1; i < 13; ++i) {
            g[i] = g[i - 1] * i;
        }
        for (int v : cnt.values()) {
            ans /= g[v];
        }
        return (int) ans;
    }
}

C++

class Solution {
public:
    int numSquarefulPerms(vector<int>& nums) {
        int n = nums.size();
        int f[1 << n][n];
        memset(f, 0, sizeof(f));
        for (int j = 0; j < n; ++j) {
            f[1 << j][j] = 1;
        }
        for (int i = 0; i < 1 << n; ++i) {
            for (int j = 0; j < n; ++j) {
                if ((i >> j & 1) == 1) {
                    for (int k = 0; k < n; ++k) {
                        if ((i >> k & 1) == 1 && k != j) {
                            int s = nums[j] + nums[k];
                            int t = sqrt(s);
                            if (t * t == s) {
                                f[i][j] += f[i ^ (1 << j)][k];
                            }
                        }
                    }
                }
            }
        }
        long long ans = 0;
        for (int j = 0; j < n; ++j) {
            ans += f[(1 << n) - 1][j];
        }
        unordered_map<int, int> cnt;
        for (int x : nums) {
            ++cnt[x];
        }
        int g[13] = {1};
        for (int i = 1; i < 13; ++i) {
            g[i] = g[i - 1] * i;
        }
        for (auto& [_, v] : cnt) {
            ans /= g[v];
        }
        return ans;
    }
};

Go

func numSquarefulPerms(nums []int) (ans int) {
	n := len(nums)
	f := make([][]int, 1<<n)
	for i := range f {
		f[i] = make([]int, n)
	}
	for j := range nums {
		f[1<<j][j] = 1
	}
	for i := 0; i < 1<<n; i++ {
		for j := 0; j < n; j++ {
			if i>>j&1 == 1 {
				for k := 0; k < n; k++ {
					if i>>k&1 == 1 && k != j {
						s := nums[j] + nums[k]
						t := int(math.Sqrt(float64(s)))
						if t*t == s {
							f[i][j] += f[i^(1<<j)][k]
						}
					}
				}
			}
		}
	}
	for j := 0; j < n; j++ {
		ans += f[(1<<n)-1][j]
	}
	g := [13]int{1}
	for i := 1; i < 13; i++ {
		g[i] = g[i-1] * i
	}
	cnt := map[int]int{}
	for _, x := range nums {
		cnt[x]++
	}
	for _, v := range cnt {
		ans /= g[v]
	}
	return
}